

iPECS eMG80

Описание оборудования и руководство по установке

iPECS is an Ericcson-LG Brand

Пожалуйста, внимательно прочтите

это руководство перед использованием системы. Сохраните его для дальнейшего использования.

Регламентирующая информация

Перед подключением системы iPECS eMG80 к телефонной сети может возникнуть необходимость уведомления обслуживающей телефонной компании (оператора связи) о намерении подключить свое оборудование. Телефонной компании может потребоваться информация о модели, количестве телефонных линий, типе подключения и другая информация, содержащаяся в данном руководстве.

Информация о телефонных номерах ТфОП, подключаемых к системе.

Название модели	iPECS eMG80
Название модели	IPECS eMG80

Телефонный номер местного регулирующего органа можно получить у местного представителя Ericsson-LG

Эквивалент нагрузки на телефонную линию:	0.7B
Зарегистрированный разъем	RJ-11

Данное оборудование соответствует следующим нормативным стандартам: требованиям безопасности EN60950-1 и требованиям МСЭ EN55022 и EN55024.

Если обслуживающая телефонная компания (оператор связи) определит, что используемое клиентом оборудование неисправно и может повредить работе телефонной сети, данное оборудование должно быть отключено до устранения неисправностей. Если это требование не будет выполнено, обслуживающая телефонная компания (оператор связи) может временно приостановить оказание услуг.

Оператор связи может вносить изменения в процедуры обслуживания и предоставляемые функции. Эти изменения могут повлиять на работу системы iPECS eMG80 или ее совместимость с телефонной сетью. В этом случае Вам необходимо выполнить соответствующие меры по обеспечению нормальной работы системы.

Система iPECS eMG80 соответствует требованиям по излучению радиочастот и помех. В соответствии с этими правилами может потребоваться сообщать пользователям системы следующую информацию:

Декларация соответствия требованиям ЕС:

Ericsson-LG Co., Ltd. заявляет, что оборудование, указанное в этом документе, имеющее знак «CE», соответствует требованиям Директивы по оконечному оборудованию (R&TTE 1999/5/EC) Европейского союза радио и телекоммуникаций, включая Директиву по электромагнитной совместимости (2004/108/EC) и Директивы по низкому напряжению (2006/95/EC). Копии сертификатов соответствия данным требованиям можно получить, обратившись к местному торговому представителю.

Заявление о помехах FCC/CSA

Это оборудование было протестировано и признано соответствующим ограничениям для цифровых устройств класса В в соответствии с частью 15 правил FCC (Федеральной комиссии связи). Эти ограничения разработаны для обеспечения разумной защиты от вредных помех в жилых и производственных помещениях. Данное оборудование генерирует, использует и может излучать радиочастотную энергию и, если оно установлено и используется в соответствии с инструкциями, может создавать помехи для радиосвязи. Тем не менее, нет никакой гарантии, что помехи не будут возникать в каждом конкретном случае. Если это оборудование вызывает помехи для радио или телевизионного приема, что может быть определено путем включения и выключения оборудования, пользователь может попытаться устранить помехи одним из следующих способов:

Данное устройство соответствует требованиям части 15 /RSS-GEN правил FCC (Федеральной комиссии связи). Эксплуатация устройства зависит от следующих условий;

(1) Это устройство не должно создавать вредных помех, и (2) Данное устройство должно выдерживать любые помехи, включая помехи, которые могут вызывать сбои в работе.

Данное цифровое устройство класса A соответствует канадскому стандарту ICES-003. Cet appareil numérique de la classe A est conforme à la norme NMB-003 du Canada.

При использовании данного устройства в системе, работающей частично или полностью на открытом воздухе, пользователю может потребоваться получить лицензию для системы согласно правилам, действующим в Канаде. За дополнительной информацией обращайтесь в местное отделение Industry Canada.

ПРЕДОСТЕРЕЖЕНИЕ

Любые изменения или модификации в конструкции данного устройства, не одобренные стороной, ответственной за соответствие, могут лишить пользователя права на эксплуатацию оборудования.

ПРЕДУПРЕЖДЕНИЕ

Данный продукт имеет класс А. В бытовых условиях это изделие может вызывать радиопомехи, в этом случае пользователь должен принять соответствующие меры.

ПРЕДУПРЕЖДЕНИЕ

Данное оборудование генерирует и излучает радиочастотную энергию, и при нарушении правил установки и эксплуатации оборудования, изложенных в данном Руководстве, могут возникнуть помехи для радиосвязи. В процессе тестирования установлено, что уровень радиоизлучения соответствует пределам, допустимым для телекоммуникационных устройств. Данное оборудование спроектировано так, чтобы обеспечивать приемлемую защиту от помех для радиосвязи и признано годным для коммерческого применения. В случае возникновения помех для радиосвязи при эксплуатации данного оборудования, пользователь должен за свой счет принять меры для их устранения."

Утилизация старого оборудования

Если устройство маркировано указанным символом (зачеркнутый мусорный бак на колесах), это означает, что на устройство распространяется действие Европейской директивы 2012/19/ЕС.

- Все электрические и электронные устройства следует сдавать для утилизации в специальные сборные центры, учреждаемые федеральными или местными/муниципальными органами.
- Правильная утилизация старого устройства поможет предотвратить потенциальное отрицательное воздействие на окружающую среду и здоровье человека.
- Более подробную информацию об утилизации старых устройств можно получить в органах городского самоуправления, службе утилизации отходов или в месте приобретения продукта.

История изменений

Выпуск	Дата	SW	ОПИСАНИЕ ВНЕСЕННЫХ ИЗМЕНЕНИЙ
1.0	Июль 2013 г.	1.0Al	Первоначальное издание

Copyright 2013 Ericsson-LG, Ltd Все права защищены

Авторские права на этот документ принадлежат компании Ericsson-LG Co., Ltd. (Ericsson-LG). Любое несанкционированное копирование, использование и распространение данных материалов полностью или частично строго запрещено в соответствии с Законом об авторском праве. Компания Ericsson-LG оставляет за собой право вносить изменения без предварительного уведомления. Информация, предоставленная компанией Ericsson-LG в этом документе, достоверна и проверена, но не претендует на исключительную точность во всех остальных случаях. Если вы не являетесь получателем данного руководства, пожалуйста, верните его обратно в Ericsson-LG.

iPECS является торговой маркой компании Ericsson-LG., Ltd.

Все другие наименования продуктов являются торговыми знаками, зарегистрированными соответствующими компаниями.

Оглавление

1.	. ВВЕДЕНИЕ1						
	1.1	1 Важные указания по технике безопасности					
	1.1	.1	Правила техники безопасности	1			
	1.1	.2	Меры предосторожности	2			
	1.2	Οŗ	анном руководстве	3			
2.	СИС	TEN	ЛА	5			
	2.1	Oc	новные характеристики системы iPECS eMG80	5			
	2.2	Об	щее описание системного блока	6			
	2.3	Cx	ема соединений системы	8			
	2.4	Ко	мпоненты системы	9			
	2.5	Тех	кнические характеристики	12			
	2.5	5.1	Общие сведения	12			
	2.5	5.2	Емкость системы	14			
	2.5	5.3	Технические характеристики базовой станции DECT GDC-600BE	24			
	2.5 50	5.4 0H	Технические характеристики беспроводных терминалов GDC-4501 24	∃и GDC-			
3.	ОБ3	OP	УСТАНОВКИ	25			
	3.1	Пе	ред началом установки	25			
	3.1	.1	Указания по технике безопасности при установке	25			
	3.1	.2	Меры предосторожности при установке	25			
	3.1	.3	Меры предосторожности при монтаже телефонных кабелей	26			
	3.2	Об	зор установки	26			
	3.3	По	дготовка к установке	26			
4.	УСТ/	AHC	ОВКА И ОПИСАНИЕ ИНТЕРФЕЙСНЫХ ПЛАТ	30			
	4.1	Об	щая информация	30			
	4.2	Сн	ятие и установка лицевой панели	31			
	4.3	Сн	ятие и установка кабельного кожуха и лицевой панели				
	систе	мнс	ого блока	33			
	4.4	Ус	гановка дополнительных плат	34			
	4.5	Ма	теринская плата системного блока (KSU)	36			
	4.5	5.1	Материнская плата MBUA	36			
	4.5	5.2	Материнская плата MBUAD	41			
	4.5	5.3	Материнская плата MBUI	44			
	4.5.4		Материнская плата MBUID	50			

	4.6 (EME	Ma [.] 8U)	теринская плата дополнительного системного блока EKSU	55
	4.7	До	полнительные интерфейсные платы	58
	4. пс	7.1 ортов)	СН204 (Плата 2 портов аналоговых соединительных линий и 4 гибридны	х
	4. пс	7.2 ортов)	СН408 (Плата 4 портов аналоговых соединительных линий и 8 гибридны	х
	4. Sl	7.3 _Т-тел	CS416 (Плата 4 портов аналоговых соединительных линий и 16 портов пефонов)	62
	4.	7.4	ВН104 (Плата 1 порта интерфейса ISDN BRI и 4 гибридных портов)	64
	4.	7.5	ВН208 (Плата 2 портов интерфейса ISDN BRI и 8 гибридных портов)	66
	4.	7.6	PRIU (Плата 1 порта интерфейса ISDN PRI - 30 каналов)	68
	4.	7.7	BRIU2 (Плата 2 портов интерфейса ISDN BRI - 4 канала)	70
	4.	7.8	НҮВ8 (Плата 8 гибридных портов)	72
	4.	7.9	SLB16 (Плата 16 портов SLT-телефонов)	73
	4.	7.10	WTIB4 (Плата интерфейса DECT)	75
	4.8	Доі	полнительные функциональные платы	77
	4. Ve	8.1 oIP и I	VVMU (VoIP and Voice Mail expansion Unit) - Модуль расширения каналов голосовой почты	77
	4.	8.2	MEMU (Memory expansion Module Unit) - Модуль расширения памяти	81
	4.	8.3	MODU (Modem function Unit) - Модуль модема	82
	4. 16	8.4 3КГц)	MG-CMU4 (Модуль определения импульсов тарификации - 50Гц/ 12КГц/ 83	
5.	MOH	HTA)	Ж СИСТЕМНЫХ БЛОКОВ KSU И EKSU	34
	5.1	Вне	ешний вид и размеры основного системного блока (KSU)	84
	5.2	Had	стольная установка	85
	5.3	Мо	нтаж на стену	86
	5.4	Уст	ановка в 19" стойку	87
6.	под	<mark>(</mark> КЛН	ОЧЕНИЕ КАБЕЛЕЙ К СИСТЕМНЫМ БЛОКАМ	39
	6.1	По	дключение системных блоков	89
	6.2	3a 3	емление системного блока	90
	6.3	По	дключение внешних батарей резервного питания	92
	6.4 абон	По, ентс	цключение к модульным разъемам портов внешних линий и ких портов	93
	6.	4.1	Подключение модульного разъема аналоговой соединительной линии	94
	6. Bl	4.2 RI	Подключение модульного разъема цифровой соединительной линии ISD 94	N
	6. Pl	4.3 RI	Подключение модульного разъема цифровой соединительной линии ISD 95	N

	6.4 тег	.4 1echo	Подключение к модульным разъемам портов цифровых системных	95
	6.4	.5	Подключение к модульным разъемам гибридных портов	
	6.4	.6	Подключение к модульным разъемам комбинированных портов циф	ровых
	иа	нало	оговых абонентских терминалов	97
	6.4 тер	.7 омин	Подключение к модульным разъемам портов аналоговых абонентск алов (SLT)	их 97
	6.4	.8	Подключение базовых станций к плате WTIB4	98
	6.5 модул	По, пя V	дключение к порту локальной сети материнской платы МВІ ′VMU	Jи 101
	6.6	US	В-порт	102
	6.7	По	дключение прочих внешних устройств	102
	6.8	По,	дключение к последовательному порту RS-232	105
	6.9	Каб	бельные подключения	107
	6.9	.1	Организация настенной проводки	107
	6.9	.2	Расположение кабелей при креплении в стойку	108
	6.9	.3	Установка кабельного кожуха	109
7.	поді	клн	ОЧЕНИЕ ТЕРМИНАЛОВ	111
	7.1	Mo	дели терминалов	111
	7.2	Ma	ксимальная удаленность абонентских терминалов	112
	7.3	По,	дключение терминалов	113
	7.3	.1	Подключение цифрового системного телефона (DKTU)	113
	7.3	.2	Подключение аналогового однолинейного терминала (SLT)	114
	7.3	.3	Подключение IP-телефона	114
	7.3	.4	Установка и подключение консоли DSS/BLF	117
	7.4	Had	стенное крепление абонентских терминалов	119
	7.4	.1	Настенное крепление терминалов iPECS серий LDP-7000 и LDP-900	0119
	7.4	.2	Настенное крепление абонентских терминалов LIP-8000E	120
8.	ЗАПУ	/СК	СИСТЕМЫ IPECS EMG80	121
	8.1	Пеј	рвое включение питания в системе iPECS eMG80	121
	8.2	Пр	оверка установки кода страны	123
	8.2 нас	.1 строі	Использование цифрового системного телефона (DKT) для проверк йки кода страны	ии 123
	8.3	Ma	стер установки	124
9.	TEXH 133	нич	ЕСКОЕ ОБСЛУЖИВАНИЕ И УСТРАНЕНИЕ НЕПОЛА	док
	9.1	Об	щее техническое обслуживание	133
	9.2	Зам	мена предохранителя блока питания	133

9.3	Поиск неисправностей	134
10.	УВЕДОМЛЕНИЕ ОБ ИСПОЛЬЗОВАНИИ ПРОГРАММНОГО	
ОБЕС	СПЕЧЕНИЯ С ОТКРЫТЫМ ИСХОДНЫМ КОДОМ1	136

1. Введение

1.1 Важные указания по технике безопасности

1.1.1 Правила техники безопасности

- При работе с устройствами системы необходимо соблюдать все меры предосторожности по предотвращению пожаров, поражения электротоком и травмирования персонала, в том числе:
- Прочитайте и усвойте все необходимые инструкции
- Соблюдайте все предупреждения и указания, нанесенные на устройства системы.
- Перед чисткой устройства отсоединяйте его от розетки; для чистки следует пользоваться влажной, смоченной водой салфеткой, запрещается применять для этой цели жидкие или аэрозольные чистящие средства.
- Запрещается устанавливать систему и пользоваться телефонами у воды, например, рядом с ванной, раковиной, кухонной мойкой или стиральной машиной, в сыром подвальном помещении или вблизи бассейна.
- Запрещается устанавливать устройство на неустойчивый стол, стойку или журнальный столик; устройство может упасть и получить серьезные повреждения или причинить тяжелые травмы окружающим.
- Щели и отверстия в системном блоке, в его задней и нижней панели предназначены для вентиляции и защиты от перегрева. Запрещается закрывать данные отверстия. Запрещается перекрывать вентиляционные отверстия, устанавливая устройство на кровати, диване или аналогичной поверхности. Запрещается устанавливать устройство на радиатор или другие источники тепла, либо вблизи них. Запрещается устанавливать устройство в закрытых местах, не обладающих достаточной вентиляцией.
- Эксплуатация системы допускается только с сетью электропитания, параметры которой соответствуют указанным в документации. Если вы не уверены в параметрах сети электропитания в вашем регионе, обратитесь за консультацией к дилеру или в местную организацию электроснабжения.
- Запрещается ставить что-либо на шнур питания. Запрещается устанавливать устройство в местах, где на шнур питания могут наступить.
- Запрещается подвергать перегрузке розетки электропитания и удлинительные кабели, это может привести к возгоранию или поражению электротоком.
- Запрещается вставлять какие-либо предметы в прорези и разъемы системного блока, они могут коснуться поверхностей под опасным напряжением или вызвать короткое замыкание. Это может стать причиной возгорания или поражения электротоком.
- В целях уменьшения риска поражения электрическим током, запрещается разбирать данное устройство. Если требуется обслуживание или ремонт, доверьте это квалифицированному специалисту. Открыв крышки устройства или сняв их, вы можете подвергнуться воздействию высокого напряжения или другим опасностям. Неправильная сборка может стать причиной поражения электротоком при последующей эксплуатации устройства.

- Отсоедините устройство от розетки электропитания и передайте для обслуживания квалифицированным специалистам в следующих случаях:
 - 1. Шнур питания или его вилка повреждены или изношены.
 - 2. На оборудование была пролита жидкость.
 - 3. Оборудование упало в воду или попало под дождь.
 - 4. Оборудование не работает должным образом при соблюдении инструкций по эксплуатации. Настраивайте только те параметры, которые описаны в инструкции по эксплуатации, поскольку неправильная настройка других параметров может привести к повреждению оборудования и потребовать серьезного ремонта квалифицированным специалистом для восстановления нормальной работоспособности.
 - 5. Оборудование упало или поврежден системный блок.
 - 6. В работе оборудования появились явные изменения.
- Запрещается пользоваться проводными телефонами во время грозы возникает определенный риск поражения электротоком от удара молнии.
- В случае утечки газа запрещается пользоваться телефоном вблизи источника утечки.

1.1.2 Меры предосторожности

- Система должна находиться вдали от нагревательных приборов и источников электрических помех, таких как люминесцентные лампы, электродвигатели и телевизоры. Такие источники помех могут помешать нормальной работе системы iPECS eMG80.
- Берегите систему от пыли, влаги, высоких температур (выше 40 градусов), вибрации и прямых солнечных лучей.
- Запрещается вставлять в систему провода, шпильки и т.п. Если система не работает должным образом, ее следует отремонтировать в авторизованном сервисном центре компании Ericsson-LG.
- Запрещается использовать для очистки системного блока бензол, растворитель или абразивный порошок. Протирайте систему только мягкой тканью.
- Установку и обслуживание системы должны осуществлять только квалифицированные специалисты.
- В случае неисправности, в результате которой повредились внутренние части системы, немедленно отсоедините шнур питания и вызовите специалиста.
- Во избежание возникновения пожара, поражения электрическим током и физических опасных факторов берегите систему от дождя и прочих видов влаги.
- Для защиты печатных плат от статического электричества, прежде чем прикасаться к разъемам и/или компонентам, снимите заряд статического электричества, для чего коснитесь заземления или наденьте заземляющий браслет.
- Чтобы уменьшить риск возгорания, используйте только соединительные кабели с толщиной 26AWG или больше (например, 24AWG) или кабели, сертифицированные CSA.
- Шнур питания используется как средство полного отключения электропитания от оборудования. Убедитесь, что электрическая розетка находится рядом с оборудованием и легко доступна.

- Дополнительно устанавливаемый заземляющий проводник может быть подключен между системным блоком и землей, то есть, в дополнение к заземляющему проводнику в шнуре питания.
- При перемещении оборудования в первую очередь отключите устройство от телефонной сети, затем отключите электропитание. После установки устройства сначала подключите устройство к электропитанию в первую очередь, а затем подключайте телефонные кабели.
- Эта система оснащена штепсельной вилкой с заземляющим контактом. По требованиям безопасности такая вилка должна подключаться только к соответствующей розетке с заземляющим контактом, установленной в соответствии с правилами.

ПРЕДУПРЕЖДЕНИЕ

Запрещается заменять штатные батареи любыми другими, существует опасность взрыва! Утилизируйте использованные батареи в соответствии с инструкциями местных регламентирующих органов.

Заменяйте батарею только батареей того же или аналогичного типа,

рекомендованного производителем.

Утилизацию отслуживших батарей осуществляйте в соответствии с инструкциями производителя и местными нормативными актами.

1.2 О данном руководстве

В данном документе приведено общее описание оборудования и процедуры установки системы iPECS eMG80. Хотя для обеспечения точности информации в данном руководстве компания Ericsson-LG Co., Ltd. (Ericsson-LG) приняла все меры, тем не менее, абсолютная точность данной информации не гарантируется и компания не несет ответственность за толкования этих сведений.

Документ состоит из девяти разделов, как описано ниже.

Раздел 1 Введение

В данном разделе представлена важная информация и инструкции по безопасности.

Раздел 2 – Обзор системы

В данном разделе приведены общие сведения о системе iPECS eMG80, в том числе технические характеристики и емкость системы.

Раздел 3 – Общее описание установки

В данном разделе приведены подробные инструкции по планированию места установки и процедур по установке системы iPECS eMG80.

Раздел 4 Установка модулей и плат

Данный раздел содержит описание и инструкции по установке компонентов системы iPECS eMG80.

Раздел 5 Монтаж блоков KSU и EKSU

Данный раздел содержит описание монтажа основного системного блока (KSU) и дополнительного системного блока (EKSU).

Раздел 6 Подключение блоков KSU и EKSU

Данный раздел содержит инструкции по подключению основного системного блока (KSU) и дополнительного системного блока (EKSU), в том числе модульных разъемов абонентских портов, соединительных линий, портов локальной сети (LAN) и различных соединений, а также описание подключения заземления и батареи резервного питания.

Раздел 7 Подключение терминалов

В данном разделе содержатся описания различных типов терминалов, которые можно подключить к системе, максимальные расстояния и способы подключения других устройств к терминалу.

Раздел 8 Запуск системы Системный еМG80

Данный раздел содержит информацию по запуску системы, включая назначение кода страны и описание работы с мастером установки.

Раздел 9 Техническое обслуживание и устранение неисправностей

Данный раздел содержит сведения по техническому обслуживанию системы iPECS eMG80, включая процедуры замены предохранителя блока питания, кроме того, приводится методика диагностики и устранения неисправностей.

Раздел 10 Уведомление об использовании программного обеспечения с открытым исходным кодом (Open Source Software)

Данный раздел содержит информацию об использовании программного обеспечения с открытым исходным кодом.

2. Система

2.1 Основные характеристики системы iPECS eMG80

Система iPECS eMG80 использует уникальную цифровую и IP-совместимую архитектуру и предоставляет пользователям доступную, гибкую и мощную телекоммуникационную платформу, способную поддерживать от 8 до более чем 100 абонентских терминалов, которые легко устанавливать, настраивать и использовать. В составе системы iPECS eMG80 имеются интерфейсы различных соединительных линий: аналоговых, цифровых, линий ISDN, каналов SIP. Для достижения гибкости и простоты использования доступна линейка пользовательских терминалов, в том числе собственные системные цифровые и многокнопочные IP-телефоны, а также стандартные SLT и SIP-телефоны. Кроме того, для обеспечения мобильности в системе доступны различные беспроводные терминалы, включая терминалы DECT, а также программные клиенты для смартфонов и ноутбуков.

Система легко устанавливается, что достигается простотой установки дополнительных плат расширения для удовлетворения потребностей клиентов и использованием стандартных модульных гнезд для проводных подключений. Управление системой через веб-интерфейс упрощает процесс локального и удаленного администрирования. Возможности программирования системы с цифрового системного телефона администратора идеально подходит для небольших изменений конфигурации по требованию конечного пользователя.

Богатый набор возможностей системы охватывает все основные функции современной телекоммуникационной платформы, такие как автоматическая переадресация входящего вызова, ручной перевод вызова, АОН, музыка при удержании и т.д., а также расширенные функции, включая встроенный многоуровневый сервис автооператора и голосовой почты с отправкой уведомлений на мобильный телефон и по электронной почте. Кроме того, система iPECS eMG80 совместима с целым рядом современных телекоммуникационных приложений Ericsson-LG, поддерживающих интерфейс компьютерной телефонии ТАРІ, включая настольные программные телефоны, оборудование UC (системы унифицированных коммуникаций), оборудование центров обработки вызовов (Call Center) и многое другое.

Кроме того, на сайте компании Ericsson-LG размещены соответствующие руководства по использованию сервера UCS, программного телефона Phontage, системы управления отелями (PMS), системы записи телефонных переговоров (IPCR), компьютерной телефонии CTI и терминалов iPECS Communicator (Android & IOS). Кроме того, мы предоставляем соответствующие руководства по работе с устройствами UC (системы унифицированных коммуникаций) и приложениями.

2.2 Общее описание системного блока

Система iPECS eMG80 состоит из основного системного блока (Key Service Unit, KSU) и, при необходимости, включает дополнительный системный блок (Expansion Key System Unit). Каждый системный блок KSU состоит из пластикового корпуса, основной процессорной платы и модуля источника питания, а также дополнительных интерфейсов и функциональных модулей и плат. В нижней части системного блока KSU имеются разъемы для подключения дополнительного системного блока EKSU.

Рисунок 2.2-1 Общий вид основного системного блока (KSU)

Как показано на рисунке 2.2-1, на левой стороне системного блока KSU находятся разъемы для подключения аккумулятора бесперебойного питания, разъем питания и контакт заземления, а также выключатель питания. На правой стороне блока находятся модульные разъемы для подключения абонентских терминалов, соединительных линий (аналоговых линий, цифровых линий ISDN PRI и BRI), разъем для подключения дополнительного оборудования (Miscellaneous), разъем DB9 последовательного порта RS-232C и порт локальной сети LAN для подключения к IP-сетям, предоставляющий возможности удаленного управления системой через веб-интерфейс и подключение SIP. соединительных линий Кроме того, между модульными разъемами соединительных линий и разъемом для подключения дополнительного оборудования (Miscellaneous) расположена утопленная кнопка сброса (Reset).

Дополнительный системный блок EKSU, показанный на рисунке 2.2-2, во многом похож на основной системный блок KSU, за исключением того, что на правой стороне дополнительного системного блока EKSU отсутствуют разъемы локальной сети и последовательного порта RS-232C, кроме того, отсутствует кнопка системного сброса.

2.3 Схема соединений системы

На следующем рисунке представлены возможные подключения различных устройств, доступные для системы iPECS eMG80, включая внешнюю сеть, абонентские терминалы, дополнительные внешние устройства, а также интерфейсы администратора.

2.4 Компоненты системы

Системный блок (KSU) может быть укомплектован одним из пяти типов материнских плат (MBU), а также дополнительными интерфейсными и функциональными платами. Каждая материнская плата определяет тип внешней сети, тип абонентских терминалов и дополнительных интерфейсных плат, которые можно установить в основном системном блоке (KSU) системы iPECS eMG80. В нижеследующей таблице 2.4-1 приводится перечень компонентов, доступных для блока KSU системы iPECS eMG80, включая различные материнские платы (MBU) и дополнительные интерфейсные и функциональные платы. В таблице 2.4-2 приведены различные интерфейсные платы, доступные для каждой материнской платы MBU, а также дополнительные материнские платы (EMBU), которые размещаются в дополнительном системном блоке (EKSU).

Параметр	Плата	Описание		
KSU		Системный блок системы iPECS eMG80 – основной блок (KSU) и дополнительный блок (EKSU)		
KSUA	MBUA	4 порта аналоговых СЛ, 1 порт цифрового системного телефона (DKT) и 7 портов гибридных интерфейсов Голосовая почта (2 канала / 1 час умолчанию, 8 каналов / 31 час макс.) VoIP (2 канала по умолчанию, 16 каналов макс.)		
KSUAD (только для США)	MBUAD (только для США)	4 порта аналоговых СЛ, 8 портов цифрового системного телефона (DKT) и 4 порта SLT-телефонов Голосовая почта (2 канала / 1 час умолчанию, 8 каналов / 31 час макс.) VoIP (2 канала по умолчанию, 16 каналов макс.)		
KSUI	MBUI	 порт цифрового системного телефона (DKT) и 7 портов гибридных интерфейсов Голосовая почта (2 канала / 1 час умолчанию, 8 каналов / 31 час макс.) VoIP (2 канала по умолчанию, 16 каналов макс.) Слот для установки платы интерфейса ISDN PRI или BRI. 		
KSUID (только для США)	MBUID (только для США)	8 портов цифрового системного телефона (DKT) и 4 порта SLT-телефонов Голосовая почта (2 канала / 1 час умолчанию, 8 каналов / 31 час макс.) VoIP (2 канала по умолчанию, 16 каналов макс.) Слот для установки платы интерфейса ISDN PRI или BRI.		
EKSU	EMBU	4 порта аналоговых СЛ и 8 портов гибридных интерфейсов		
PSU		Блок питания, установленный изготовителем в каждом системном блоке		
Платы интерфейсов	eMG80-CH204	Плата 2 портов аналоговых СЛ и 4 гибридных интерфейсов		
	eMG80-CH408	Плата 4 портов аналоговых СЛ и 8 гибридных интерфейсов		

Таблица 2.4-1 Пер	речень компонентов системы iPECS eMG80
-------------------	--

Параметр	Плата	Описание
	eMG80-CS416	Плата 4 портов аналоговых СЛ и 16 SLT-телефонов
	eMG80-BH104	Плата 1 интерфейса ISDN BRI (2B+D) и 4 гибридных интерфейсов
	eMG80-BH208	Плата 2 интерфейсов ISDN BRI (2B+D) и 8 гибридных интерфейсов
	eMG80-HYB8	Плата 8 гибридных интерфейсов
	eMG80-SLB16	Интерфейсная плата 16 аналоговых однолинейных телефонов
	eMG80-PRIU	Плата интерфейса ISDN PRI/E1R2 или T1 (30 или 24 каналов), 1 порт
	eMG80-BRIU2	Плата интерфейса ISDN BRI (2B+D), 2 порта
	eMG80-WTIB4	Плата интерфейса DECT, 4 порта для подключения базовых станций
Функциональные eMG80-VVMU Модуль расширения каналов VOIP и модули 8 каналов VoIP, 4 канала голосовой г сообщений голосовой почты по умол - для активации функций VoIP, канал хранения сообщений голосовой почт установка лицензии		Модуль расширения каналов VOIP и Голосовой Почты. 8 каналов VoIP, 4 канала голосовой почты, 1 час хранения сообщений голосовой почты по умолчанию плюс 15 часов - для активации функций VoIP, каналов голосовой почты и хранения сообщений голосовой почты требуется установка лицензии
	eMG80-MEMU	Модуль расширения памяти Голосовой Почты (15 часов)
	eMG80-MODU	Модуль модема
	MG-CMU4	Модуль определения импульсов тарификации, 4 канала, дочерний модуль для установки на материнских платах MBU и EMBU, а также на платах аналоговых СЛ
eMG80-RMB		Кронштейн для монтажа в 19" стойку (опция)

	Доп. плата	KSUA	KSUAD	KSUI	KSUID	EKSU
Платі	ы интерфейсов					
	eMG80-CH204	ДА	ДA	ДA	ДA	ДА
	eMG80-CH408	ДА	ДA	ДA	ДА	ДА
	eMG80-CS416	ДА	ДA	ДA	ДA	ДА
	eMG80-BH104	ДА	ДA	ДA	ДА	HET
	eMG80-BH208	ДА	ДA	ДA	ДA	HET
	eMG80-PRIU	HET	HET	ДA	ДА	HET
	eMG80-BRIU2	HET	HET	ДA	ДА	HET
	eMG80-HYB8	ДА	ДA	ДA	ДA	ДA
	eMG80-SLB16	ДА	ДA	ДA	ДА	ДА
	eMG80-WTIB4	ДА	ДA	ДA	ДA	HET
Функі модул	циональные пи					
	eMG80-VVMU	ДА	ДA	ДА	ДА	HET
	eMG80-MEMU	ДА	ДА	ДА	ДА	HET
	eMG80-MODU	ДА	ДА	ДА	ДА	HET
	MG-CMU4	ДА	ДА	HET	HET	ДА

Таблица 2.4-2 Совместимость дополнительных плат и моделей системных блоков

ПРИМЕЧАНИЕ

- В каждом основном системном блоке (KSU) может быть установлено до двух интерфейсных плат. Обратите внимание, что интерфейсные платы CS416, SLB16 или WTIB4 могут быть установлены в системный блок KSU только по одной.
- 2. В системном блоке KSUI для интерфейсных плат eMG80-PRIU и eMG80-BRIU2 используется специальный слот, и может быть установлена только одна из указанных плат.

2.5 Технические характеристики

2.5.1 Общие сведения

Таблица 2.5.1-1 Общие сведения

Параметр	Описание	Технические характеристики
Процессор		M83261G, ARM11 двухъядерный (32 бит, 650МГц)
Продолжительность работы батареи часов реального времени (RTC)		7 лет
PSU	Входное напряжение, переменный ток	100~240 +/- 10% В переменного тока, 47-63 Гц
	Потребляемая мощность от сети переменного тока	90 Вт
	Предохранитель переменного тока	2А 250В переменного тока
	Выходное напряжение, постоянный ток	+5, -5, +27, +30В постоянного тока
Внешние батареи резервного питания	Входное напряжение	+24В постоянного тока (2 батареи +12В постоянного тока на каждый блок KSU)
	Предохранитель батареи	5А 250В переменного тока
	Ток зарядки	Не более 200мА
	Максимальный ток нагрузки батареи резервного питания	Не более 3А (только KSU), не более 6А (KSU + EKSU)
Звонковый сигнал		65В действующего напряжения, 25 Гц
Реле внешних контактов		1А 30В постоянного тока
Входы внешнего источника музыки		0 дБм, 600 Ом
Порт внешнего оповещения		0 дБм, 600 Ом
Чувствительность определения вызывного сигнала		30В действующего напряжения, 16-55 Гц
Тональный набор	Отклонение частоты	Менее +/-1,8%
(DTMF)	Время нарастания	5 мс

Параметр	Описание	Технические характеристики
	Длительность сигнала	Минимальная 50 мс, нормальная 100 мс
	Межцифровой интервал	Минимальный 30 мс, нормальный 100 мс
Импульсный набор	Частота импульсов	10 имп/сек
	Отношение импульс/пауза	60/40% или 66/33%
Условия эксплуатации	Температура	0 (° C) - 40 (° C)
	Влажность	0~80% без образования конденсата
Размеры	KSU	307 мм (Ш) х 294 мм (В) х126.6 мм (Г)
	Доп. системный блок (EKSU)	307 мм (Ш) х 294 мм (В) х126.6 мм (Г)
Масса	KSU	2.03 кг
	Доп. системный блок (EKSU)	1.99 кг
MODU	Аналоговый модем	Bell, ITU-T, V.34 V.32BIS, V.90
	Скорость передачи	Скорость передачи от 300 бит/с до 33 Кбит/с
	Подключение	Автосогласование скорости передачи
VoIP	Интерфейс локальной сети	10/100BaseT Ethernet (IEEE 802.3)
	Скорость передачи	10/100 МБит/с (автосогласование)
	Дуплекс	Полудуплекс или полный дуплекс (автосогласование)
	VoIP-протокол	SIP и Н.323 версия 2
	Сжатие речи	G.711/ G.726/ G729/ G.723.1
	Переключение голос/факс	Т.38
	Подавление эха	G.165

2.5.2 Емкость системы

Ниже приводятся таблицы емкости системы. В таблицах 2.5.2-1 - 2.5.2-5 приводятся общие системные данные о максимальной емкости, в зависимости от типа используемого основного системного блока KSU. Обратите внимание, что не все максимальные значения являются одновременно достижимыми. При этом максимальное количество каналов VoIP достигается отдельно от максимумов для внешних сетевых и абонентских терминалов. Например, в дополнение к портам интерфейсов аналоговых и цифровых соединительных линий (СЛ) доступно до 16 каналов VoIP. Кроме того, возможно подключение до 48 портов беспроводных терминалов DECT вне зависимости от максимальных значений для проводных терминалов.

Параметр	Емкость
Соединительные линии	Максимум 74
Абоненты	Максимум 140
Операторы	4
Порт LAN	2 (1 для KSU и 1 для VVMU)
Каналы модема	1 (MODU)
Последовательный порт (RS-232C)	1
Порт USB Host (2.0)	1
Вход датчика контроля за состоянием контактов внешней сигнализации / Дверной звонок	2 (1 на блок KSU)
Реле управления внешними устройствами	2 (1 на блок KSU)
	1 Внутренний: выбор из 13 мелодий
Источник музыки для режима	1 Внешний источник
удержания	5 портов SLT-телефонов
	3 голосовых сообщений VSF
Цепи аварийного переключения линий	Максимум 6 (1 на KSU, EKSU, CH204, CH408, CS416)
VSF Устройство 1: Встроенная	4 канала (2 канала по умолчанию, 2 канала по
система автооператора и голосовой почты (АА/VM)	лицензии), 1 час
при наличии модуля MEMU	15 часов (лицензия не требуется)
VSF Устройство 2 (VVMU)	4 канала и 15 часов (по лицензии), 1 час (по умолчанию)
Конференц-каналы	148, 3-13 участников или неограниченная 3-сторонняя
WTIB	1
DECT-терминалы	48

Таблица 2.5.2-1 Общие показатели емкости системы

Параметр	Емкость
Встроенные каналы VoIP	8 (2 канала по умолчанию, 6 каналов по лицензии)
VoIP каналы модуля VVMU	8 (по лицензии)
IP-абоненты и SIP СЛ (транки)	48 портов (32 абонентских + 16 SIP СЛ)
External Page (Внешнее оповещение)	1 порт
Internal Page (Внутреннее оповещение)	35 зон
Системный сокращенный набор (System Speed Dial)	3000 номеров, 23 цифры в каждой ячейке
Зоны (группы) системных ячеек сокращенного набора	10 зон
Персональный сокращенный набор	100 номеров, 23 цифры в каждой ячейке (Макс. 4000 номеров)
Ячейки памяти последних набранных номеров	10 номеров, 23 цифры в каждой ячейке
Повторный набор сохраненного номера	1 номер длиной до 23 цифр
Журнал вызовов (Исходящие/Входящие/Пропущенные вызовы)	15 ~ 50, 23 цифры (программируется)
Консоли DSS на абонента	3
Буфер SMDR	5000
Группы соединительных линий	20
Количество групп абонентов	40
Макс. количество абонентов в группе	70
Группы перехвата вызовов	50
Максимальное количество абонентов в группе перехвата	140
Конференц-группы - Системные	40
Конференц-группы - Абонент	20 на абонента
Пары Руководитель / Секретарь	36
Коды авторизации	500 (абонентские: 140, системные: 360)

Тип ресурса	Тип устройства	Максимальная емкость	Платы интерфейсов	
	KSUA: 4 порта аналоговых СЛ и 1 порт цифрового системного телефона (DKT) + 7 портов гибридных интерфейсов и 2 канала VoIP			
	Аналоговые соединительные линии	12	2 CH408 или 1 CH408 + 1 CS416	
	Линии ISDN BRI	4 (2B+D) и 4 аналоговых СЛ	2 BH208	
	Линии PRI/E1	0		
Внешняя	Каналы SIP	16 каналов	VOIP каналы материнской платы и модуля VVMU используются как в качестве SIP транка, так и для подключения IP-абонентов (LIP/SIP). 16 одновременных вызовов.	
сеть	EKSU			
	Аналоговые соединительные линии	12	2 CH408 или 1 CH408 + 1 CS416	
	KSUA + EKSU			
	Аналоговые соединительные линии	24		
	Линии ISDN BRI	4 (2B+D) и 16 аналоговых СЛ		
	Линии PRI	0		
	SIP-транк	16 каналов		
	KSUA			
Абоненты	Цифровой системный телефон	24	2 CH408 или BH208 или комбинация	
	SLT-телефоны	31 и 1 цифровой системный телефон (DKT)	1 (CH408 или BH208) + 1 CS416	
	LIP / SIP	32	VOIP каналы материнской платы и модуля VVMU используются как в качестве SIP транка, так и для подключения IP-абонентов (LIP/SIP). 16 одновременных вызовов.	
	DECT	48	WTIB4 24 одновременных вызовов, 6 на одну базовую станцию	
	EKSU			
	Цифровой	24	2 CH408	

Таблица 2.5.2-1 Максимальные значения емкости устройств для блока KSUA

Тип ресурса	Тип устройства	Максимальная емкость	Платы интерфейсов
	системный телефон		
	SLT-телефоны	32	1 CH408 + 1CS416
	KSUA + EKSU		
	Цифровой системный телефон	48	
	SLT-телефоны	63 и 1 цифровой системный телефон (DKT)	
	LIP / SIP	32	Для каждого SIP-телефона требуется отдельная лицензия
	DECT	48	

Тип ресурса	Устройство	Максимальная емкость	Платы интерфейсов
	KSUAD: 4 порта	аналоговых СЛ и 8 по	ртов цифрового системного
	телефона (DKT) ·	+ 4 порта SLT-телефон	нов и 2 канала VoIP
	Аналоговые соединительные линии	12	2 CH408 или 1 CH408 + 1 CS416
	Линии ISDN BRI	4 (2B+D) и 4 аналоговых СЛ	2 BH208
	Линия PR/E1I	0	
Внешняя	SIP-транк	16 каналов	VOIP каналы материнской платы и модуля VVMU используются как в качестве SIP транка, так и для подключения IP-абонентов (LIP/SIP). 16 одновременных вызовов.
сеть	EKSU		· · · · · ·
	Аналоговые соединительные линии	12	2 CH408 или 1 CH408 + 1 CS416
	KSUAD + EKSU		
	Аналоговые соединительные линии	24	
	Линии ISDN BRI	4 (2B+D) и 16 аналоговых СЛ	
	Линии PRI	0	
	SIP-транк	16 каналов	
	KSUAD		
Абоненты	Цифровой системный телефон	24 и 4 порта SLT- телефонов	2 CH408 или BH208 или комбинация
	SLT-телефоны	28 и 8 цифровой системный телефон (DKT)	1 (CH408 или BH208) + 1 CS416
	LIP / SIP	32	VOIP каналы материнской платы и модуля VVMU используются как в качестве SIP транка, так и для подключения IP-абонентов (LIP/SIP). 16 одновременных вызовов.
	DECT	48	24 одновременных вызовов
	EKSU		
	Цифровой системный телефон	24	2 CH408

Таблица 2.5.2-2 Максимальные значения емкости устройств для блока KSUAD

iPECS eMG80 Описание оборудования и руководство по установке

Тип ресурса	Устройство	Максимальная емкость	Платы интерфейсов
	SLT-телефоны	32	1 CH408 + 1CS416
	KSUAD + EKSU		
	Цифровой системный телефон	48 и 4 порта SLT- телефонов	
	SLT-телефоны	60 и 8 цифровой системный телефон (DKT)	
	LIP / SIP	32	Для каждого SIP-телефона требуется отдельная лицензия
	DECT	48	

Тип ресурса	Устройство	Максимальная емкость	Платы интерфейсов
	KSUI: 0 портов аналоговых СЛ и 1 порт цифрового системного телеф (DKT) + 7 портов SLT-телефонов и 2 канала VoIP		
	Аналоговые соединительные линии	8	2 CH408 или 1 CH408 + 1 CS416
	Линии ISDN BRI	6 (2B+D)	2 BH208 + BRIU
	Линии PRI/E1	30 каналов	1 PRIU
	SIP-транк	16 каналов	VOIP каналы материнской платы и модуля VVMU используются как в качестве SIP транка, так и для подключения IP-абонентов (LIP/SIP). 16 одновременных вызовов.
сеть	EKSU		
	Аналоговые соединительные линии	12	2 CH408 или 1 CH408 + 1 CS416
	KSUI + EKSU		
	Аналоговые соединительные линии	20	
	Линии ISDN BRI	6 (2B+D) и 12 аналоговых СЛ	
	Линии PRI/E1	30 каналов	
	SIP-транк	16 каналов	
	KSUI		
	Цифровой системный телефон	24	2 CH408 или BH208 или комбинация
Абоненты	SLT-телефоны	31 и 1 цифровой системный телефон (DKT)	1 (CH408 или BH208) +1CS416
	LIP / SIP	32	VOIP каналы материнской платы и модуля VVMU используются как в качестве SIP транка, так и для подключения IP-абонентов (LIP/SIP). 16 одновременных вызовов.
	DECT	48	WTIB4 24 одновременных вызовов
	EKSU	Γ	
	Цифровой системный телефон	24	2 CH408

Таблица 2.5.2-3 Максимальные значения емкости устройств для блока KSUI

iPECS eMG80 Описание оборудования и руководство по установке

Тип ресурса	Устройство	Максимальная емкость	Платы интерфейсов
	SLT-телефоны	32	1 CH408 + 1CS416
	KSUI + EKSU		
	Цифровой системный телефон	48	
	SLT-телефоны	63 и 1 цифровой системный телефон (DKT)	
	LIP / SIP	32	Для каждого SIP-телефона требуется отдельная лицензия
	DECT	48	

Тип ресурса	Устройство	Максимальная емкость	Платы интерфейсов
	KSUID: 0 портов	аналоговых СЛ и 8 по	ртов цифрового системного
	телефона (DKT) ·	+ 4 порта SLT-телефон	юв и 2 канала VoIP
	Аналоговые соединительные линии	8	2 CH408 или 1 CH408 + 1 CS416
	Линии ISDN BRI	6 (2B+D)	1 BRIU + 2 BH408
	Линии PRI/E1	30 каналов	1 PRIU
-	SIP-транк	16 каналов	VOIP каналы материнской платы и модуля VVMU используются как в качестве SIP транка, так и для подключения IP-абонентов (LIP/SIP). 16 одновременных вызовов.
сеть	KSUID		
	Аналоговые соединительные линии	12	2 CH408 или 1 CH408 + 1 CS416
	KSUID + EKSU		
	Аналоговые соединительные линии	20	
	Линии ISDN BRI	6 (2B+D) и 12 аналоговых СЛ	
	Линии PRI/E1	30 каналов	
	SIP-транк	16 каналов	
	KSUID		
	Цифровой системный телефон	24 и 4 порта SLT- телефонов	2 CH408 или BH208 или комбинация
Абоненты	SLT-телефоны	28 и 8 цифровой системный телефон (DKT)	1 (CH408 или BH208) + 1 CS416
	LIP / SIP	32	VOIP каналы материнской платы и модуля VVMU используются как в качестве SIP транка, так и для подключения IP-абонентов (LIP/SIP). 16 одновременных вызовов.
	DECT	48	WTIB4 24 одновременных вызовов
	EKSU		
	Цифровой системный телефон	24	2 CH408

Таблица 2.5.2-4 Максимальные значения емкости устройств для блока KSUID

Тип ресурса	Устройство	Максимальная емкость	Платы интерфейсов
	SLT-телефоны	32	1 CH408 + 1CS416
	KSUID + EKSU		
	Цифровой системный телефон	48 и 4 порта SLT- телефонов	
	SLT-телефоны	60 и 8 цифровой системный телефон (DKT)	
	LIP / SIP	32	Для каждого SIP-телефона требуется отдельная лицензия
	DECT	48	

2.5.3 Технические характеристики базовой станции DECT GDC-600BE

Параметр	Технические характеристики
Электропитание	+30 В постоянного тока
Пиковая мощность при передаче	250 мВт
Метод доступа / Дуплекс	TDMA/TDD
	1880~1900 МГц
	1920~1930 Мгц (США)
Разнесение каналов	1,728МГц
Метод модуляции	GFSK
Скорость передачи	1,152 МБит/с
Максимальное расстояние от	600 м (двухпарный кабель типа
базовой станции до модуля WTIB4	"витая пара")

Таблица 2.5.3-1 Технические характеристики базовой станции DECT

2.5.4 Технические характеристики беспроводных терминалов GDC-450H и GDC-500H

Таблица 2.5.4-1	Технические характеристики	беспроводных термина	лов DECT
-----------------	----------------------------	----------------------	----------

Параметр	Технические характеристики	
Пиковая мощность при	250 мВт	
передаче		
Метод модуляции	GFSK	
-	1880 ~ 1900 МГц	
Полоса частот	1920 ~ 1930 Мгц (США)	

3. Обзор установки

3.1 Перед началом установки

Перед началом установки системы, пожалуйста, внимательно прочитайте нижеследующие рекомендации относительно установки и подключения. Обязательно соблюдайте местные нормативные требования.

3.1.1 Указания по технике безопасности при установке

При монтаже телефонных кабелей необходимо соблюдать все меры предосторожности по предотвращению пожаров, поражения электротоком и травмирования персонала, в том числе:

- Запрещается производить монтаж телефонных кабелей во время грозы
- Запрещается устанавливать телефонную розетку во влажных местах, кроме случаев, когда данная розетка является влагозащищенной.
- Запрещается прикасаться к оголенным телефонным проводам или клеммам, если данная телефонная линия не была предварительно отключена от телефонной сети.
- Соблюдайте осторожность при установке и модификации телефонных линий.
- Во время установки необходимо строго соблюдать меры предосторожности для защиты от статического электричества.

3.1.2 Меры предосторожности при установке

Системные блоки iPECS eMG80 (KSU) предназначены для настольного или настенного монтажа, а также для монтажа в 19" стойку. Ни в коем случае не допускается установка одного системного блока на другой при настольном монтаже. Избегайте установки в следующих местах:

- Под прямыми солнечными лучами, в местах с очень высокой (или с очень низкой) температурой или высокой влажностью; оптимальный температурный диапазон – от 0 до 40 С.
- В местах, подверженных частым или сильным вибрациям.
- В запыленных местах или в местах, где возможно попадание на системный блок воды или масла.
- Вблизи устройств, генерирующих высокочастотные импульсы (например, швейные машинки, установки электросварки).
- На компьютерах, факсах, другом офисном оборудовании, на микроволновых печах, кондиционерах, либо вблизи таких устройств.
- Не закрывайте вентиляционные отверстия в верхней панели системных блоков iPECS eMG80.
- Не ставьте друг на друга платы расширения.

3.1.3 Меры предосторожности при монтаже телефонных кабелей

При монтаже соблюдайте следующие меры предосторожности:

- Запрещается подключать телефонный кабель параллельно источнику питания переменного тока, такому как компьютер, факс и т.п. В случае прокладки кабеля вблизи таких проводов необходимо использовать металлические трубки или применять экранированный кабель с заземлением экрана.
- Если кабель прокладывается по полу, используйте защитные элементы, чтобы не наступать на провода. Запрещается прокладывать кабель под ковровыми покрытиями.
- Не следует использовать для подключения электропитания системы ту же розетку, которая используется для подключения компьютера, факса и другого офисного оборудования, чтобы избежать наведения электрических шумов в системе, результатом чего может быть ухудшение качества звука или появление статического электричества.
- Выключатель сетевого питания и переключатель аккумулятора резервного питания должен быть выключен во время подключения телефонных кабелей связи. Во время установки кабелей запрещается подача электропитания в систему. По окончании прокладки кабелей можно подключить электропитание.
- Неправильный монтаж телефонных кабелей может привести к неправильной работе системы iPECS eMG80.
- Если абонентский телефонный аппарат работает неправильно, отсоедините телефон от абонентской линии и подключите заново, либо выключите и снова включите питание системы.
- Для подключения СЛ используйте кабель типа "витая пара".

3.2 Обзор установки

Установка проводится в 7 шагов, перечисленных в списке ниже.

- 1. Предварительные мероприятия, раздел 3.3
- 2. Установка интерфейсных и функциональных плат, раздел 0
- 3. Установка системных блоков KSU и EKSU, раздел 5
- 4. Подключение кабелей к системным блокам KSU и EKSU, раздел 6
- 5. Подключение и установка абонентских терминалов, раздел 7
- 6. Включение питания и запуск мастера установки, раздел 8
- 7. По вопросам установки и настройки подсистемы DECT обратитесь к соответствующим Руководствам по установке устройства GDC-600TBE и базовой станции GDC-600BE.

3.3 Подготовка к установке

В рамках подготовки к установке, найдите подходящее место для установки системного блока KSU, учитывая меры предосторожности, указанные в предыдущих разделах, особенности расположения электрических проводов и телефонных кабелей, доступ к розеткам электропитания и т.д. Кроме того, при установке подсистемы DECT определите наилучшее местоположение для базовой станции. Постоянное местонахождение базовой станции определите с помощью устройства GDC-600BTE, предназначенного для определения зон наилучшего радиопокрытия.

После определения места установки системных блоков проверьте наличие оборудования и доступные монтажные диаграммы. Распакуйте системный блок KSU и, при необходимости, EKSU. Проверьте комплектность поставки в соответствии с рисунками 3.1 и 3.2.

Обратите внимание, что кабель расширения поставляется только в комплекте к дополнительному системному блоку EKSU.

Рисунок 9-1 Комплект поставки основного системного блока KSU

Рисунок 9-2 Комплект поставки дополнительного системного блока EKSU

4. УСТАНОВКА И ОПИСАНИЕ ИНТЕРФЕЙСНЫХ ПЛАТ

4.1 Общая информация

В основном системном блоке KSU системы iPECS eMG80 находится материнская плата с процессором, памятью и микросхемами интерфейсов. На материнской плате могут установлены дополнительные интерфейсные модули быть для расширения возможностей внешних сетевых интерфейсов и увеличения количества подключаемых к системе абонентских терминалов. Как системный блок KSU, так и дополнительный блок EKSU позволяют установить по две дополнительные интерфейсные платы. Кроме того, для расширения различных функциональных возможностей системы, на материнской плате системного блока KSU могут быть установлены дополнительные платы. В этом разделе содержится описание различных компонентов и пошаговые инструкции по установке дополнительных плат.

4.2 Снятие и установка лицевой панели

Перед снятием и установкой лицевой панели необходимо подготовить отвертку.

Снятие лицевой панели

- 1. С помощью отвертки ослабьте винты с обеих сторон лицевой панели.
- 2. Поднимите лицевую панель в направлении, указанном стрелкой.

Рисунок 4.1. Снятие лицевой панели

Установка лицевой панели

- 1. Вставьте лицевую панель в выемки на системном блоке KSU.
- 2. Сдвиньте лицевую панель вниз вдоль поверхности системного блока в направлении, указанном стрелкой.
- 3. Вставьте винты в середину резьбовых отверстий, а затем затяните винты отверткой, чтобы зафиксировать лицевую панель.

Рисунок 4.2. Установка лицевой панели

ПРИМЕЧАНИЕ

Для обеспечения безопасности лицевая панель всегда должна быть установлена, винты надежно затянуты.

4.3 Снятие и установка кабельного кожуха и лицевой панели системного блока

Перед установкой дополнительных плат в основной системный блок (KSU) или дополнительный системный блок (EKSU) необходимо снять на блоке лицевую панель и кабельный кожух. Чтобы снять лицевую панель и кожух и получить доступ к разъемам материнской платы (MBU):

- 1. Удалите винт в позиции 1 на рисунке ниже, затем слегка надавите на защелку в позиции 2 на верхней части кабельного кожуха и снимите кабельный кожух.
- 2. Удалите два винта, крепящих лицевую панель, как показано в позиции 3 на рисунке ниже.
- 3. Поднимите лицевую панель блока в направлении, указанном стрелкой.
- 4. Снимите лицевую панель. Убедитесь в том, что лицевая панель и кабельный кожух находятся в безопасном месте.

Рисунок 4.3. Снятие лицевой панели и кабельного кожуха

ПРИМЕЧАНИЕ

В целях безопасности, всегда перед началом работы убедитесь в том, что лицевая панель и кабельный кожух правильно и надежно установлены на своих местах на системном блоке.

Более подробное описание процедуры крепления кабельного кожуха приводится в разделе 6.9.3.

Для установки лицевой панели повторите шаги процедуры снятия панели в обратном порядке, как показано ниже.

- 1. Вставьте выступы на панели в пазы на блоке KSU.
- 2. Слегка надавите на крышку и сдвиньте ее до защелкивания на поверхности блока.
- 3. Вставьте винты в середину резьбовых отверстий, а затем затяните винты отверткой, чтобы зафиксировать лицевую панель.
- 4. Установите кабельный кожух.

Вставьте в отверстия и затяните крепежные винты лицевой панели.

4.4 Установка дополнительных плат

Перед установкой любой дополнительной платы электропитание системы должно быть отключено. Мы рекомендуем при установке всегда надевать на руку специальный электростатический браслет, подключенный к надежному заземлению. Во всяком случае, прежде чем прикасаться к любой плате, сбросьте возможный заряд статического электричества, прикоснувшись к металлической детали заземленного предмета.

Рисунок 4.4 Установка дополнительной платы

Чтобы установить плату, выполните следующие шаги, как показано на рисунке 4.4 ниже:

- 1. Снимите кабельный кожух и лицевую панель блока KSU, как описано в разделе 4.3.
- 2. Для установки платы интерфейса удалите крышку модульного разъема, как показано в позиции 1.
- 3. Выкрутите два крепежных винта материнской платы в местах, указанных на рисунке в позиции 2, и снимите их.

- 4. Вставьте две крепежные втулки в отверстия, из которых на предыдущем шаге были извлечены винты, см. позицию 2. Затяните крепежные втулки гаечным ключом.
- 5. Удерживая материнскую плату, как показано в позиции 3, аккуратно вставьте дополнительную плату в направлении, указанном стрелкой.
- 6. Осторожно совместите разъем на плате с контактами разъема расширения на материнской плате, затем, нажимая на дополнительную плату, полностью вставьте ее в разъем.
- 7. Чтобы надежно закрепить установленную в разъем дополнительную плату, вставьте и затяните два винта, как показано на рисунке в позиции 5.

4.5 Материнская плата системного блока (KSU)

Завод-изготовитель устанавливает в основной системный блок (KSU) одну из четырех материнских плат: MBUA, MBUAD, MBUI или MBUID. Технические характеристики материнских плат обсуждаются далее в разделах 4.5.1 - 4.5.4.

4.5.1 Материнская плата MBUA

Описание

Материнская плата (Main Board Unit) MBUA, которая показана ниже на рисунке 4.5.1-1, управляет передачей информации между периферийными платами, контролирует все ресурсы системы, регулировку коэффициентов усиления сигналов импульсно-кодовой модуляции (PCM), генерирует системные тональные сигналы, управляет обработкой вызовов. На материнской плате MBUA находятся переключатели для защиты системной базы данных и инициализации системы. Встроенный порт локальной сети LAN обеспечивает доступ к веб-интерфейсу настройки системы iPECS eMG80 и основных каналов VoIP. Кроме того, для обеспечения возможностей резервного копирования и восстановления системной базы данных на материнской плате имеется порт USB.

Материнская плата MBUA имеет четыре порта аналоговых внешних линий (CO), один порт цифрового системного телефона (DKT), семь гибридных абонентских портов и два канала VoIP. Порты внешних линий обеспечивают интерфейс аналоговых соединительных линий с сигнализацией замыканием шлейфа (Loop Start CO Line), включая сервисы автоматического определителя номера (CID, российский AOH), обнаружения изменения полярности (PR), и детектирования акустических сигналов прохождения вызова (CPT).

Интерфейс SLT-телефонов гибридных портов поддерживает следующие виды сервиса: формирование и посылка номера вызывающего абонента (CID) в соответствии со стандартами FSK (ITU-T V.23 или Bell 202) или DTMF (ITU-T B.23), индикация ожидающего сообщения (MWI), обнаружение тональных сигналов (DTMF), синусоидальный генератор звонковых сигналов, питание линии напряжением -48В постоянного тока, ограничение тока нагрузки, функция тестирования линии GR-909.

Каналы VoIP требуются для поддержки каждой соединительной линии SIP, телефонов iPECS LIP или SIP-телефонов, а также удаленных пользователей. В базовой конфигурации на каждой материнской плате имеется два канала VoIP. При установке лицензионного ключа количество каналов VoIP на материнской плате может быть увеличено до восьми.

Как показано на рисунке ниже, на материнской плате MBU имеются разъемы для подключения различных дополнительных плат, включая разъем CN1, который используется для подключения дополнительных интерфейсных плат. На материнской плате может быть установлено до двух дополнительных интерфейсных плат. Первая устанавливаемая плата монтируется непосредственно в разъем CN1 на материнской плате, вторая интерфейсная плата устанавливается при помощи

переходного разъема первой установленной платы. Дополнительные интерфейсные платы, доступные для установки на материнской плате MBUA включают в себя:

- CH204 Плата интерфейсов аналоговых соединительных линий и гибридных портов: 2 порта аналоговых СЛ и 4 гибридных порта
- СН408 Плата интерфейсов аналоговых соединительных линий и гибридных портов: 4 порта аналоговых СЛ и 8 гибридных портов
- НҮВ8 Плата интерфейсов гибридных портов, 8 гибридных портов
- CS416 Плата интерфейсов аналоговых соединительных линий и SLT-телефонов: 4 порта аналоговых СЛ и 16 портов SLT
- SLB8 Плата интерфейсов SLT-телефонов, 16 портов SLTтелефонов
- ВН104 Плата интерфейсов ISDN BRI и гибридных портов, 1 порт ISDN BRI (каналы 2B+D) и 4 гибридных порта
- BH208 Плата интерфейсов ISDN BRI и гибридных портов, 2 порта ISDN BRI (каналы 2B+D) и 8 гибридных портов
- WTIB4 Плата интерфейса DECT, 4 порта базовых станций DECT

Кроме того, на плате MBUA могут быть установлены следующие функциональные модули:

- VVMU (VoIP and Voice Mail expansion Unit) Модуль расширения каналов VoIP и голосовой почты
- MEMU (Memory expansion Module Unit) Модуль расширения памяти
- MODU (Modem function Unit) Модуль модема
- MG-CMU4 (Модуль определения импульсов тарификации 50Гц/ 12КГц/ 16КГц)

Рисунок 4.5.1-1 Материнская плата MBUA

В состав материнской платы MBUA входят следующие компоненты:

- 4 интерфейса аналоговой соединительной линии (CO Line)
- Интерфейс цифрового системного телефона (DKT) для абонентского терминала оператора 100
- 7 интерфейсов гибридных портов (цифровых или аналоговых абонентских терминалов)
- Реле управления внешними устройствами: громкого вызова (LBC), оповещения или открытия двери
- Датчик внешней сигнализации, порт внешнего оповещения, порт внешнего источника музыки при удержании
- Порт внутреннего источника музыки при удержании (13 мелодий)
- Встроенные каналы VoIP, по умолчанию 2 канала, возможно расширение до 8 каналов при установке лицензионного ключа
- Встроенные каналы голосовой почты, по умолчанию 2 канала, возможно расширение до 4 каналов при установке лицензионного ключа
- Генератор тактовой частоты и схема внешней сетевой синхронизации (PLL), обеспечивающая выделение сигнала тактовой частоты из цифрового потока линии ISDN.
- Схема аварийного переключения линий (PFT), порт CO1 подключается к последнему порту SLT (STA8)
- Порт последовательного интерфейса RS-232C
- Интерфейс локальной сети (LAN)
- Порт последовательного интерфейса USB
- Схема обработки речевых сигналов импульсно-кодовой модуляции (ИКМ), на базе СБИС-микросхемы АСТ2 (обеспечивает коммутацию каналов ИКМ и включает в себя цифровой сигнальный процессор DSP):

- Генератор тональных сигналов, регулировка коэффициентов усиления

- Детектирование тональных сигналов (DTMF / CPT / факс) и CID (FSK / DTMF / RUS CID)

ПРИМЕЧАНИЕ

При отказе блока питания последний аналоговый SLT-порт на плате MBU будет автоматически подключен к порту CO1.

Разъемы и переключатели

В нижеследующей таблице перечислены различные разъемы для дополнительных интерфейсных плат, модульные разъемы серии RJ для подключения внешних линий, абонентов и дополнительных функций, а также переключатели, расположенные на основной материнской плате.

Таблица 4.5.11 Функциональное назначение разъемов и переключател	ей
системного блока KSU с материнской платой MBUA	

Разъем	Функция	Примечание
CN1	Для установки платы расширения интерфейсов соединительных линий и абонентов	70 контактов
CN3	Для установки модуля VVMU	32 контактов
CN4	Для установки модуля MODU (Модуль последовательного интерфейса модема)	20 контактов
CN5 и CN6	Для соединения системных блоков KSU и EKSU при помощи кабеля расширения	19 контактов х 2
CN7	Разъем блока питания	7 контактов
CN8 и CN9	Для установки модуля MG-CMU4	8 и 10 контактов
CN10	Разъем FPGA JTAG для технологических нужд	10 контактов
CN11	Разъем последовательного порта RS-232C.	9 контактов
CN12	Разъем CPU JTAG для технологических нужд	20 контактов
CN15	Для установки модуля MEMU (Модуль расширения памяти)	20 контактов
	Соединительные линии СО1 и СО2	2 порта СЛ на
МЈ1-1 И МЈ1-2	Соединительные линии СОЗ и СО4	каждый разъем
MJ2-1 ~ MJ2-8	1 порт цифрового системного телефона (DKT) и 7 гибридных портов (цифровых или аналоговых абонентских терминалов)	8 портов
MJ3	Порты LAN и USB	1 LAN / 1 USB
MJ4	Реле внешних контактов / Сигнализация / Оповещение / Внешний источник музыки при удержании	1 порт
SW1	DIP- переключатель защиты базы данных	
SW2	Кнопка перезапуска системы (Reset)	

DIP- переключатель

Таблица 4.5.12 Назначение DIP-переключателя SW1 материнской платы MBUA

Переклю-		Состояние переключателя		Примонация
чатель Функция		ON (ВКЛ)	ОFF (ВЫКЛ)	примечания
SW1-1	Защита базы данных	Изменение параметров базы данных запрещено	Изменение параметров базы данных разрешено	По умолчанию - OFF (ВЫКЛ)
SW1-2	Инициализация базы данных	Инициализация базы данных при перезапуске системы	При перезапуске системы считывается сохраненная база данных	По умолчанию - ON (ВКЛ)

Светодиодные индикаторы

Таблица 4.5.13 Светодиодная индикация материнской платы MBUA

Индикатор	Цвет	Описание
LD1	Синий	Мигание с периодом 300 мс: нормальная работа
LD2	Синий	Состояние абонентского порта
		Светится - Абонентский порт используется
		Выключен - Абонентский порт в состоянии
		ожидания
LD3	Зеленый	Внешняя синхронизация
		Светится: Используется тактовая синхронизация
		от сети ISDN
		Не светится: Используется синхронизация от
		внутреннего генератора тактовой частоты

4.5.2 Материнская плата MBUAD

Описание

Материнская плата (Main Board Unit) MBUAD, которая показана ниже на рисунке 4.5.2-1, управляет передачей информации между периферийными платами, контролирует все ресурсы системы, регулировку коэффициентов усиления сигналов импульсно-кодовой модуляции (PCM), генерирует системные тональные сигналы, управляет обработкой вызовов. На материнской плате MBUAD находятся переключатели для защиты системной базы данных и инициализации системы. Встроенный порт локальной сети LAN обеспечивает доступ к веб-интерфейсу настройки системы iPECS eMG80 и основных каналов VoIP. Кроме того, для обеспечения возможностей резервного копирования и восстановления системной базы данных, на материнской плате имеется порт USB.

Материнская плата MBUAD имеет четыре порта аналоговых внешних линий, восемь портов цифровых системных телефонов (DKT), четыре порта SLT-телефонов и два канала VoIP. Порты внешних линий обеспечивают интерфейс аналоговых соединительных линий с сигнализацией замыканием шлейфа (Loop Start CO Line), включая сервисы автоматического определителя номера (CID), обнаружения изменения полярности (PR), и детектирования акустических сигналов прохождения вызова (CPT).

Интерфейс SLT-телефонов гибридных портов поддерживает следующие виды сервиса: формирование и посылка номера вызывающего абонента (CID) в соответствии со стандартами FSK (ITU-T V.23 или Bell 202) или DTMF (ITU-T B.23), индикация ожидающего сообщения (MWI), обнаружение тональных сигналов (DTMF), синусоидальный генератор звонковых сигналов, питание линии напряжением -48В постоянного тока, ограничение тока нагрузки, функция тестирования линии GR-909.

Каналы VoIP требуются для поддержки каждой соединительной линии SIP, телефонов iPECS LIP или SIP-телефонов, а также удаленных пользователей. В базовой конфигурации на каждой материнской плате имеется два канала VoIP. При установке лицензионного ключа количество каналов VoIP на материнской плате может быть увеличено до восьми.

Как показано на рисунке ниже, на материнской плате MBU имеются разъемы для подключения различных дополнительных плат, включая разъем CN1, который используется для подключения дополнительных интерфейсных плат. На материнской плате может быть установлено до двух дополнительных интерфейсных плат. Первая устанавливаемая плата монтируется непосредственно в разъем CN1 на материнской плате, вторая интерфейсная плата устанавливается при помощи переходного разъема первой установленной платы. Дополнительные интерфейсные платы, доступные для установки на материнской плате MBUAD включают в себя:

- CH204 Плата интерфейсов аналоговых соединительных линий и гибридных портов: 2 порта аналоговых СЛ и 4 гибридных порта
- СН408 Плата интерфейсов аналоговых соединительных линий и гибридных портов: 4 порта аналоговых СЛ и 8 гибридных портов
- НҮВ8 Плата интерфейсов гибридных портов, 8 гибридных портов

- CS416 Плата интерфейсов аналоговых соединительных линий и SLT-телефонов: 4 порта аналоговых СЛ и 16 портов SLT
- SLB8 Плата интерфейсов SLT-телефонов, 16 портов SLTтелефонов
- ВН104 Плата интерфейсов ISDN BRI и гибридных портов, 1 порт ISDN BRI (каналы 2B+D) и 4 гибридных порта
- BH208 Плата интерфейсов ISDN BRI и гибридных портов, 2 порта ISDN BRI (каналы 2B+D) и 8 гибридных портов
- WTIB4 Плата интерфейса DECT, 4 порта базовых станций DECT

Кроме того, на плате MBUAD могут быть установлены следующие функциональные модули:

- VVMU (VoIP and Voice Mail expansion Unit) Модуль расширения каналов VoIP и голосовой почты
- MEMU (Memory expansion Module Unit) Модуль расширения памяти
- MODU (Modem function Unit) Модуль модема
- MG-CMU4 (Модуль определения импульсов тарификации 50Гц/ 12КГц/ 16КГц)

Рисунок 4.5.2-1 Материнская плата MBUAD

В состав материнской платы MBUAD входят следующие компоненты:

- 4 интерфейса аналоговой соединительной линии (CO Line)
- 8 интерфейсов цифровых системных телефонов
- 4 интерфейса SLT-телефонов
- Реле управления внешними устройствами: громкого вызова (LBC), оповещения или открытия двери
- Датчик внешней сигнализации, порт внешнего оповещения, порт внешнего источника музыки при удержании

- Порт внутреннего источника музыки при удержании (13 мелодий)
- Встроенные каналы VoIP, по умолчанию 2 канала, возможно расширение до 8 каналов при установке лицензионного ключа
- Встроенные каналы голосовой почты, по умолчанию 2 канала, возможно расширение до 4 каналов при установке лицензионного ключа
- Генератор тактовой частоты и схема внешней сетевой синхронизации (PLL), обеспечивающая выделение сигнала тактовой частоты из цифрового потока линии ISDN.
- Схема реле управления внешним устройством аварийного переключения линий (PFT), порт CO1 подключается к последнему порту SLT (STA12)
- Порт последовательного интерфейса RS-232C
- Порт локальной сети (LAN) и порт последовательного интерфейса USB
- Схема обработки речевых сигналов импульсно-кодовой модуляции (ИКМ), на базе СБИС-микросхемы АСТ2 (обеспечивает коммутацию каналов ИКМ и включает в себя цифровой сигнальный процессор DSP):

- Генератор тональных сигналов, регулировка коэффициентов усиления

- Детектирование тональных сигналов (DTMF / CPT / факс) и CID (FSK / DTMF / RUS CID)

Разъемы и переключатели

В нижеследующей таблице перечислены различные разъемы для дополнительных интерфейсных плат, модульные разъемы серии RJ для подключения внешних линий, абонентов и дополнительных функций, а также переключатели, расположенные на основной материнской плате.

Таблица 4.5.21 Функциональное назначение разъемов и переключателей
системного блока KSU с материнской платой MBUAD

Разъем	Функции	Примечание
CN1	Для установки платы расширения интерфейсов	70 контактов
	соединительных линий и абонентов	
CN3	Для установки модуля VVMU	32 контактов
CN4	Для установки модуля MODU (Модуль	20 контактов
	последовательного интерфейса модема)	
CN5 и CN6	Для соединения системных блоков KSU и EKSU	19 контактов х 2
	при помощи кабеля расширения	
CN7	Разъем блока питания	7 контактов
CN8 и CN9	Для установки модуля MG-CMU4	8 и 10 контактов
CN10	Разъем FPGA JTAG для технологических нужд	10 контактов
CN11	Разъем последовательного порта RS-232C.	9 контактов
CN12	Разъем CPU JTAG для технологических нужд	20 контактов
CN15	Для установки модуля MEMU (Модуль	20 контактов

Разъем	Функции	Примечание
	расширения памяти)	
MJ1-1 и	Соединительные линии СО1 и СО2	2 порта СЛ на
MJ1-2	Соединительные линии СОЗ и СО4	каждый разъем
MJ2	8 портов цифровых системных телефонов (DKT) и 4 порта SLT-телефонов	12 портов
MJ3	Порты LAN и USB	1 LAN / 1 USB
MJ4	Реле внешних контактов / Сигнализация / Оповещение / Внешний источник музыки при удержании	1 порт
SW1	DIP- переключатель защиты базы данных	
SW2	Кнопка перезапуска системы (Reset)	

DIP-переключатель

Таблица 4.5.22 Назначение DIP-переключателя SW1 материнской платы MBUAD

Переклю-	Фушкция	Состояние переключателя		Примонания
чатель	Функция	ON (ВКЛ)	ОFF (ВЫКЛ)	примечания
SW1-1	Защита базы данных	Изменение параметров базы данных запрещено	Изменение параметров базы данных разрешено	По умолчанию - OFF (ВЫКЛ)
SW1-2	Инициализация базы данных	Инициализация базы данных при перезапуске системы	При перезапуске системы считывается сохраненная база данных	По умолчанию - ON (ВКЛ)

Светодиодные индикаторы

Таблица 4.5.23 Светодиодная индикация материнской платы MBUAD

Индикатор	Цвет	Описание
LD1	Синий	Мигание с периодом 300 мс: нормальная работа
LD2	Синий	Состояние абонентского порта
		Светится - Абонентский порт используется
		Выключен - Абонентский порт в состоянии
		ожидания
LD3	Зеленый	Внешняя синхронизация
		Светится: Используется тактовая синхронизация от
		сети ISDN
		Не светится: Используется синхронизация от
		внутреннего генератора тактовой частоты

4.5.3 Материнская плата MBUI

Описание

Материнская плата (Main Board Unit) MBUI, которая показана ниже на рисунке 4.5.3-1, управляет передачей информации между периферийными платами, контролирует все ресурсы системы, регулировку коэффициентов усиления сигналов импульснокодовой модуляции (PCM), генерирует системные тональные сигналы, управляет обработкой вызовов. На материнской плате MBUI находятся переключатели для защиты системной базы данных и инициализации системы. Встроенный порт локальной сети LAN обеспечивает доступ к веб-интерфейсу настройки системы iPECS eMG80. Кроме того, для обеспечения возможностей резервного копирования и восстановления системной базы данных, на материнской плате имеется порт USB.

Материнская плата MBUI имеет один порт цифрового системного телефона (DKT), семь гибридных абонентских портов и два канала VoIP.

Интерфейс SLT-телефонов гибридных портов поддерживает следующие виды сервиса: формирование и посылка номера вызывающего абонента (CID) в соответствии со стандартами FSK (ITU-T V.23 или Bell 202) или DTMF (ITU-T B.23), индикация ожидающего сообщения (MWI), обнаружение тональных сигналов (DTMF), синусоидальный генератор звонковых сигналов, питание линии напряжением -48В постоянного тока, ограничение тока нагрузки, функция тестирования линии GR-909.

Каналы VoIP требуются для поддержки каждой соединительной линии SIP, телефонов iPECS LIP или SIP-телефонов, а также удаленных пользователей. В базовой конфигурации на каждой материнской плате имеется два канала VoIP. При установке лицензионного ключа количество каналов VoIP на материнской плате может быть увеличено до восьми.

Как показано на рисунке ниже, на материнской плате MBU имеются разъемы для подключения различных дополнительных плат, включая разъем CN1, который используется для подключения дополнительных интерфейсных плат. На материнской плате может быть установлено до двух дополнительных интерфейсных плат. Парвая устанавливаемая плата монтируется непосредственно в разъем CN1 на материнской плате, вторая интерфейсная плата устанавливается при помощи переходного разъема первой установленной платы. Дополнительные интерфейсные платы, доступные для установки на материнской плате MBUI (блок KSUI) включают в себя:

- СН204 Плата интерфейсов аналоговых соединительных линий и гибридных портов: 2 порта аналоговых СЛ и 4 гибридных порта
- СН408 Плата интерфейсов аналоговых соединительных линий и гибридных портов: 4 порта аналоговых СЛ и 8 гибридных портов
- НҮВ8 Плата интерфейсов гибридных портов, 8 гибридных портов
- CS416 Плата интерфейсов аналоговых соединительных линий и SLTтелефонов: 4 порта аналоговых СЛ и 16 портов SLT
- SLB8 Плата интерфейсов SLT-телефонов, 16 портов SLT-телефонов
- ВН104 Плата интерфейсов ISDN BRI и гибридных портов, 1 порт ISDN BRI (каналы 2B+D) и 4 гибридных порта
- BH208 Плата интерфейсов ISDN BRI и гибридных портов, 2 порта ISDN BRI (каналы 2B+D) и 8 гибридных портов
- WTIB4 Плата интерфейса DECT, 4 порта базовых станций DECT
- PRIU Плата интерфейса ISDN PRI/E1R2 или T1 (30 или 24 каналов), 1 порт
- BRIU2 Плата интерфейса ISDN BRI (2B+D), 2 порта.

Кроме того, на плате MBUI могут быть установлены следующие функциональные модули:

- VVMU (VoIP and Voice Mail expansion Unit) Модуль расширения каналов VoIP и голосовой почты
- MEMU (Memory expansion Module Unit) Модуль расширения памяти
- MODU (Modem function Unit) Модуль модема

Плата PRIU или BRIU2 может быть установлена только в разъем CN2. При этом, установка платы PRIU или BRIU2 не ограничивает использование разъема CN1 для включения в него других интерфейсных плат.

В состав материнской платы MBUI входят следующие компоненты:

- 1 интерфейс цифровых системных телефонов
- 7 интерфейсов гибридных портов (цифровых или аналоговых абонентских терминалов)
- Интерфейсный разъем для модулей PRIU или BRIU2
- Реле управления внешними устройствами: громкого вызова (LBC), оповещения или открытия двери
- Датчик внешней сигнализации, порт внешнего оповещения, порт внешнего источника музыки при удержании
- Порт внутреннего источника музыки при удержании (13 мелодий)
- Встроенные каналы VoIP, по умолчанию 2 канала, возможно расширение до 8 каналов при установке лицензионного ключа
- Встроенные каналы голосовой почты, по умолчанию 2 канала, возможно расширение до 4 каналов при установке лицензионного ключа

- Генератор тактовой частоты и схема внешней сетевой синхронизации (PLL), обеспечивающая выделение сигнала тактовой частоты из цифрового потока линии ISDN.
- Порт последовательного интерфейса RS-232C
- Порт локальной сети (LAN) и порт последовательного интерфейса USB
- Схема обработки речевых сигналов импульсно-кодовой модуляции (ИКМ), на базе СБИС-микросхемы АСТ2 (обеспечивает коммутацию каналов ИКМ и включает в себя цифровой сигнальный процессор DSP):
 - -Генератор тональных сигналов, регулировка коэффициентов усиления
 - Детектирование тональных сигналов (DTMF / CPT / факс) и CID (FSK / DTMF / RUS CID)

Разъемы и переключатели

В нижеследующей таблице перечислены различные разъемы для дополнительных интерфейсных плат, модульные разъемы серии RJ для подключения внешних линий, абонентов и дополнительных функций, а также переключатели, расположенные на основной материнской плате.

Таблица 4.5.31 Функциональное назначение разъемов и переключате.	тей
системного блока KSU с материнской платой MBUI	

Разъем	Функции	Примечание
CN1	Для установки платы расширения интерфейсов соединительных линий и абонентов	70 контактов
CN2	Для установки платы PRIU или BRIU2	40 контактов
CN4	Для установки модуля MODU (Модуль последовательного интерфейса модема)	20 контактов
CN5 и CN6	Для соединения системных блоков KSU и EKSU при помощи кабеля расширения	19 контактов х 2
CN7	Разъем блока питания	7 контактов
CN10	Разъем FPGA JTAG для технологических нужд	10 контактов
CN11	Разъем последовательного порта RS-232C.	9 контактов
CN12	Разъем CPU JTAG для технологических нужд	20 контактов
CN15	Для установки модуля MEMU (Модуль расширения памяти)	20 контактов
MJ2	 порт цифрового системного телефона (DKT) и гибридных портов цифровых или аналоговых абонентских терминалов 	8 портов
MJ3	Порты LAN и USB	1 LAN / 1 USB
MJ4	Реле внешних контактов / Сигнализация / Оповещение / Внешний источник музыки при	1 порт

Разъем	Функции	Примечание
	удержании	
SW1	DIP-переключатель защиты базы данных	
SW2	Кнопка перезапуска системы (Reset)	

<u> DIP-переключатель</u>

Таблица 4.5.32 Назначение DIP-переключателя SW1 материнской платы MBUI

Переклю-	A	Состояние пе		
чатель Функция		ON (ВКЛ)	ОFF (ВЫКЛ)	примечания
SW1-1	Защита базы данных	Изменение параметров базы данных запрещено	Изменение параметров базы данных разрешено	По умолчанию - OFF (ВЫКЛ)
SW1-2	Инициализация базы данных	Инициализация базы данных при перезапуске системы	При перезапуске системы считывается сохраненная база данных	По умолчанию - ON (ВКЛ)

Индикация светодиодных индикаторов

Таблица 4.5.33 Светодиодная индикация материнской платы MBUI

Индикатор	Цвет	Описание	
LD1	Синий	Мигание с периодом 300 мс: нормальная работа	
LD2	Синий	Состояние абонентского порта	
		Светится - Абонентский порт используется	
		Выключен - Абонентский порт в состоянии	
		ожидания	
LD3	Зеленый	Внешняя синхронизация	
		Светится: Используется тактовая синхронизация	
		от сети ISDN	
		Не светится: Используется синхронизация от	
		внутреннего генератора тактовой частоты	

4.5.4 Материнская плата MBUID

<u>Описание</u>

Материнская плата (Main Board Unit) MBUID, которая показана ниже на рисунке 4.5.4-1, управляет передачей информации между периферийными платами, контролирует все ресурсы системы, регулировку коэффициентов усиления сигналов импульсно-кодовой модуляции (PCM), генерирует системные тональные сигналы, управляет обработкой вызовов. На материнской плате MBUID находятся переключатели для защиты системной базы данных и инициализации системы. Встроенный порт локальной сети LAN обеспечивает доступ к веб-интерфейсу настройки системы iPECS eMG80 и основных каналов VoIP. Кроме того, для обеспечения возможностей резервного копирования и восстановления системной базы, данных на материнской плате имеется порт USB.

Материнская плата MBUID имеет восемь портов цифрового системного телефона (DKT), четыре порта SLT-телефонов и два канала VoIP.

Интерфейс SLT-телефонов гибридных портов поддерживает следующие виды сервиса: формирование и посылка номера вызывающего абонента (CID) в соответствии со стандартами FSK (ITU-T V.23 или Bell 202) или DTMF (ITU-T B.23), индикация ожидающего сообщения (MWI), обнаружение тональных сигналов (DTMF), синусоидальный генератор звонковых сигналов, питание линии напряжением -48В постоянного тока, ограничение тока нагрузки, функция тестирования линии GR-909.

Каналы VoIP требуются для поддержки каждой соединительной линии SIP, телефонов iPECS LIP или SIP-телефонов, а также удаленных пользователей. В базовой конфигурации на каждой материнской плате имеется два канала VoIP. При установке лицензионного ключа количество каналов VoIP на материнской плате может быть увеличено до восьми.

Как показано на рисунке ниже, на материнской плате MBU имеются разъемы для подключения различных дополнительных плат, включая разъем CN1, который используется для подключения дополнительных интерфейсных плат. На материнской плате может быть установлено до двух дополнительных интерфейсных плат. Первая устанавливаемая плата монтируется непосредственно в разъем CN1 на материнской плате, вторая интерфейсная плата устанавливается при помощи переходного разъема первой установленной платы. Дополнительные интерфейсные платы, доступные для установки на материнской плате MBUID включают в себя:

- СН204 Плата интерфейсов аналоговых соединительных линий и гибридных портов: 2 порта аналоговых СЛ и 4 гибридных порта
- СН408 Плата интерфейсов аналоговых соединительных линий и гибридных портов: 4 порта аналоговых СЛ и 8 гибридных портов
- НҮВ8 Плата интерфейсов гибридных портов, 8 гибридных портов
- CS416 Плата интерфейсов аналоговых соединительных линий и SLTтелефонов: 4 порта аналоговых СЛ и 16 портов SLT
- SLB8 Плата интерфейсов SLT-телефонов, 16 портов SLT-телефонов

- ВН104 Плата интерфейсов ISDN BRI и гибридных портов, 1 порт ISDN BRI (каналы 2B+D) и 4 гибридных порта
- BH208 Плата интерфейсов ISDN BRI и гибридных портов, 2 порта ISDN BRI (каналы 2B+D) и 8 гибридных портов
- WTIB4 Плата интерфейса DECT, 4 порта базовых станций DECT
- PRIU Плата интерфейса ISDN PRI/E1R2 или T1 (30 или 24 каналов), 1 порт
- BRIU2 Плата интерфейса ISDN BRI (2B+D), 2 порта.

Кроме того, на плате MBUID могут быть установлены следующие функциональные модули:

- VVMU (VoIP and Voice Mail expansion Unit) Модуль расширения каналов VoIP и голосовой почты
- MEMU (Memory expansion Module Unit) Модуль расширения памяти
- MODU (Modem function Unit) Модуль модема

Плата PRIU или BRIU2 может быть установлена только в разъем CN2. При этом, установка платы PRIU или BRIU2 не ограничивает использование разъема CN1 для включения в него других интерфейсных плат.

Рисунок 4.5.4-1 Материнская плата MBUID

В состав материнской платы MBUID входят следующие компоненты:

- 8 интерфейсов цифровых системных телефонов
- 4 интерфейса SLT-телефонов
- Интерфейсный разъем модулей PRIU или BRIU2
- Реле управления внешними устройствами: громкого вызова (LBC), оповещения или открытия двери

- Датчик внешней сигнализации, порт внешнего оповещения, порт внешнего источника музыки при удержании
- Порт внутреннего источника музыки при удержании (13 мелодий)
- Встроенные каналы VoIP, по умолчанию 2 канала, возможно расширение до 8 каналов при установке лицензионного ключа
- Встроенные каналы голосовой почты, по умолчанию 2 канала, возможно расширение до 4 каналов при установке лицензионного ключа
- Генератор тактовой частоты и схема внешней сетевой синхронизации (PLL), обеспечивающая выделение сигнала тактовой частоты из цифрового потока линии ISDN.
- Порт последовательного интерфейса RS-232C
- Порт локальной сети (LAN) и порт последовательного интерфейса USB
- Схема обработки речевых сигналов импульсно-кодовой модуляции (ИКМ), на базе СБИС-микросхемы АСТ2 (обеспечивает коммутацию каналов ИКМ и включает в себя цифровой сигнальный процессор DSP):

-Генератор тональных сигналов, регулировка коэффициентов усиления

- Детектирование тональных сигналов (DTMF / CPT / факс) и CID (FSK / DTMF / RUS CID).

Разъемы и переключатели

В нижеследующей таблице перечислены различные разъемы для дополнительных интерфейсных плат, модульные разъемы серии RJ для подключения внешних линий, абонентов и дополнительных функций, а также переключатели, расположенные на основной материнской плате.

Таблица 4.5.41 Функциональное назначение разъемов и переключателей системного блока KSU с материнской платой MBUID

Разъем Функции Примеча	ние
------------------------	-----

Разъем	Функции	Примечание
CN1	Для установки платы расширения интерфейсов	70 контактов
	соединительных линий и абонентов	
CN2	Для установки модулей PRIU или BRIU2	40 контактов
CN4	Для установки модуля MODU (Модуль	20 контактов
	последовательного интерфейса модема)	
CN5 и CN6	Для соединения системных блоков KSU и	19 контактов х
	EKSU при помощи кабеля расширения	2
CN7	Разъем блока питания	7 контактов
CN10	Разъем FPGA JTAG для перспективных	10 контактов
	разработок	
CN11	Разъем последовательного порта RS-232C.	9 контактов
CN12	Разъем CPU JTAG для перспективных	20 контактов
	разработок	
CN15	Для установки модуля MEMU (Модуль	20 контактов
	расширения памяти)	
MJ2	8 портов цифровых системных телефонов	12 портов
	(DKT) и 4 порта SLT-телефонов	
MJ3	Порты LAN и USB	1 LAN / 1 USB
MJ4	Реле внешних контактов / Сигнализация /	1 порт
	Оповещение / Внешний источник музыки при	
	удержании	
SW1	DIP-переключатель защиты базы данных	
SW2	Кнопка перезапуска системы (Reset)	

DIP- переключатель

Таблица 4.5.42 DIP-переключатель SW1 материнской платы MBUID

Переклю-	фуниция.	Состояние пе	Примонания	
чатель Функция		ON (ВКЛ)	ОFF (ВЫКЛ)	примечания
SW1-1	Защита базы данных	Изменение параметров базы данных запрещено	Изменение параметров базы данных разрешено	По умолчанию - OFF (ВЫКЛ)
SW1-2	Инициализация базы данных	Инициализация базы данных при перезапуске системы	При перезапуске системы считывается сохраненная база данных	По умолчанию - ON (ВКЛ)

Светодиодные индикаторы

Таблица 4.5.43 Светодиодная индикация материнской платы MBUID

Индикатор	Цвет	Описание		
LD1	Синий	Мигание с периодом 300 мс: нормальная работа		
LD2	Синий	Состояние абонентского порта		

Индикатор	Цвет	Описание		
		Светится - Абонентский порт используется		
		Выключен - Абонентский порт в состоянии		
		ожидания		
LD3	Зеленый	Внешняя синхронизация		
		Светится: Используется тактовая синхронизация		
		от сети ISDN		
		Не светится: Используется синхронизация от		
		внутреннего генератора тактовой частоты		

4.6 Материнская плата дополнительного системного блока EKSU (EMBU)

<u>Описание</u>

В дополнительном системном блоке EKSU (Expansion Key System Unit) установлена материнская плата EMBU (Expansion Main Board Unit), которая показана на рисунке 4.6-1. Данная плата обеспечивает взаимодействие между дополнительным системным блоком EKSU с установленными в нем дополнительными интерфейсными платами и основным системным блоком KSU, который управляет работой интерфейсов.

Материнская плата дополнительного системного блока EMBU имеет четыре порта аналоговых внешних линий и восемь гибридных абонентских портов (Hybrid). Порты внешних линий обеспечивают интерфейс аналоговых соединительных линий с сигнализацией замыканием шлейфа (Loop Start CO Line), включая сервисы автоматического определителя номера (CID, российский AOH), обнаружения изменения полярности (PR), и детектирования акустических сигналов прохождения вызова (CPT).

Интерфейс SLT-телефонов гибридных портов поддерживает следующие виды сервиса: формирование и посылка номера вызывающего абонента (CID) в соответствии со стандартами FSK (ITU-T V.23 или Bell 202) или DTMF (ITU-T B.23), индикация ожидающего сообщения (MWI), обнаружение тональных сигналов (DTMF), синусоидальный генератор звонковых сигналов, питание линии напряжением -48В постоянного тока, ограничение тока нагрузки, функция тестирования линии GR-909.

Как показано на рисунке ниже, материнская плата дополнительного системного блока EMBU имеет разъем CN1 для подключения различных дополнительных интерфейсных плат, и разъемы CN8 и CN9 для установки дочернего модуля тарификации вызовов для аналоговых соединительных линий. На плате EMBU может быть установлено до двух дополнительных интерфейсных плат. Первая устанавливаемая плата монтируется непосредственно в разъем CN1 на основной плате модуля EMBU, вторая интерфейсная плата устанавливается при помощи переходного разъема первой установленной платы. Дополнительные интерфейсные платы, доступные для установки на модуле EMBU, включают в себя:

- СН204 Плата интерфейсов аналоговых соединительных линий и гибридных портов: 2 порта аналоговых СЛ и 4 гибридных порта
- СН408 Плата интерфейсов аналоговых соединительных линий и гибридных портов: 4 порта аналоговых СЛ и 8 гибридных портов
- НҮВ8 Плата интерфейсов гибридных портов, 8 гибридных портов
- CS416 Плата интерфейсов аналоговых соединительных линий и SLT-телефонов: 4 порта аналоговых СЛ и 16 портов SLT
- SLB8 Плата интерфейсов SLT-телефонов, 16 портов SLTтелефонов

Рисунок 4.6-1 Материнская плата дополнительного системного блока (EMBU)

В состав материнской платы дополнительного системного блока (EMBU) входят следующие компоненты:

- 4 интерфейса аналоговой соединительной линии (CO Line)
- 8 гибридных интерфейсов (Hybrid)
- Реле управления внешними устройствами: громкого вызова (LBC), оповещения или открытия двери
- Вход датчика контроля за состоянием контактов внешней сигнализации
- Схема реле управления внешним устройством аварийного переключения линий (PFT), порт CO1 подключается к последнему порту SLT (STA8)
- Схема обработки речевых сигналов импульсно-кодовой модуляции (ИКМ), на базе СБИС-микросхемы АСТ2 (обеспечивает коммутацию каналов ИКМ и включает в себя цифровой сигнальный процессор DSP):
- Генератор тональных сигналов, регулировка коэффициентов усиления

- Детектирование тональных сигналов (DTMF / CPT / факс) и AOH (FSK / DTMF / RUS CID)

Разъемы и переключатели

В нижеследующей таблице перечислены различные разъемы для дополнительных интерфейсных плат, модульные разъемы серии RJ для подключения внешних линий, абонентов и дополнительных функций, а также переключатели, расположенные на основной материнской плате.

реключателей цирония EMBII

Разъем	Функции	Примечание
CN1	Для установки платы расширения интерфейсов соединительных линий и абонентов	70 контактов
CN5 и CN6	Для соединения системных блоков KSU и EKSU при помощи кабеля расширения	19 контактов x 2
CN7	Разъем блока питания	7 контактов
CN8 и CN9	Для установки модуля MG-CMU4	8 и 10 контактов
MJ1-1 и	Соединительные линии СО1 и СО2	2 порта СЛ
MJ1-2	Соединительные линии СОЗ и СО4	на каждый разъем
MJ2	8 интерфейсов гибридных портов (цифровые системные или аналоговые SLT телефоны)	8 портов
MJ4	Реле / Сигнализация	1 порт

Светодиодные индикаторы

Таблица 4.6-2 Светодиодная индикация модуля EMBU

Индикатор	Цвет	Описание	
LD1	Синий	Мигание с периодом 300 мс: нормальная работа	
LD2	Синий	Состояние абонентского порта	
		Светится - Абонентский порт используется	
		Выключен - Абонентский порт в состоянии	
		ожидания	

4.7 Дополнительные интерфейсные платы

Дополнительные интерфейсные платы устанавливаются на материнской плате основного системного блока KSU и дополнительного системного блока EKSU. Интерфейсные платы позволяют пользователю системы расширять возможности подключения к внешним сетям, увеличивать количество абонентских портов, доступных в системе iPECS eMG80. Интерфейсные платы перечислены в нижеследующей таблице. Обратите внимание, что платы, которые можно установить в системном блоке KSU, зависят от типа материнской платы. Различные типы материнских плат описаны выше в разделе 4.5.

Плата	Описание	Разъемы	Кабель
CH204	2 порта аналоговых СЛ и 4 гибридных порта	RJ45 и RJ11	2-проводный
CH408	4 порта аналоговых СЛ и 8 гибридных портов	RJ45 и RJ11	2-проводный
CS416	4 порта аналоговых СЛ и 16 портов SLT-телефонов	RJ45 и RJ11	2-проводный
BH104	1 порт интерфейса ISDN BRI и 4 гибридных порта	RJ45 и RJ11	4-проводный (для BRI) и 2- проводный (для терминалов)
BH208	2 порта интерфейса ISDN BRI и 8 гибридных портов	RJ45 и RJ11	4-проводный (для BRI) и 2- проводный (для терминалов)
PRIU	1 порт интерфейса ISDN PRI (30 каналов)	RJ45	4-проводная линия
BRIU2	2 порта интерфейса ISDN BRI (4 канала)	RJ45	4-проводный
HYB8	8 гибридных портов	RJ11	2-проводный
SLB16	16 портов SLT-телефонов	RJ11	2-проводный
WTIB4	4 порта базовых станций DECT	RJ11	4-проводный

Таблица 4.7-1 Дополнительные интерфейсные платы

Интерфейсные платы, имеющие порты аналоговых СЛ, поддерживают линейную сигнализацию замыканием шлейфа (Loop Start CO Line), а также сервисы автоматического определителя номера (CID, российский АОН), обнаружения изменения полярности (PR), и предоставление тонального сигнала о прохождении вызова (CPT). Интерфейс SLT-телефонов гибридных портов поддерживает следующие виды сервиса: формирование и посылка номера вызывающего абонента (CID) в соответствии со стандартами FSK (ITU-T V.23 или Bell 202) или DTMF (ITU-T B.23), индикация ожидающего сообщения (MWI), обнаружение тональных сигналов (DTMF), синусоидальный генератор звонковых сигналов, питание линии напряжением -48В постоянного тока, ограничение тока нагрузки, функция тестирования линии GR-909.

4.7.1 CH204 (Плата 2 портов аналоговых соединительных линий и 4 гибридных портов)

Описание

Интерфейсная плата CH204 имеет два порта аналоговых соединительных линий и четыре гибридных порта (цифровых системных телефонов и SLT-телефонов). Плата CH204 может быть установлена в разъем CN1 системного блока KSU или EKSU. Для обеспечения функций тарификации вызовов на интерфейсной плате CH204 может быть установлена дочерняя плата MG-CMU4. Плата CMU4 устанавливается в разъемы CN790 и CN791, как показано ниже на рисунке 4.7.1-1.

Плата снабжена двумя монтажными стойками, которые должны быть закреплены до установки платы. Чтобы установить плату в системный блок KSU, обратитесь к разделу 4.4.

Рисунок 4.7.1-1 Интерфейсная плата СН204

Коннекторы и модульные разъемы

В нижеследующей таблице показаны коннекторы и модульные разъемы интерфейсной платы CH204.

Таблица 4.7.11 Ф	Функциональное назначен	ие коннекторов и мод	цульных разъемов
------------------	--------------------------------	----------------------	------------------

Разъем	Функции	Примечание
CN1	Переходный разъем для второй интерфейсной платы	70 контактов
CN2	Для подключения платы к разъему CN1 материнской платы MBU	70 контактов
CN3	Разъем CPLD JTAG для технологических нужд	10 контактов
СN790 и CN791	Для установки модуля MG-CMU4	8 и 10 контактов
MJ1	Аналоговые СЛ (СО1 и СО2)	RJ45
MJ2	4 интерфейса гибридных портов (цифровых или аналоговых абонентских терминалов)	RJ11

Светодиодные индикаторы

Индикатор	Цвет	Описание
LD1	Синий	Состояние абонентского порта
		Светится - Абонентский порт используется
		Выключен - Абонентский порт в состоянии ожидания

Таблица 4.7.12 С	ветодиодная индикац	ия интерфейсно	ой платы СН204

4.7.2 СН408 (Плата 4 портов аналоговых соединительных линий и 8 гибридных портов)

Описание

Интерфейсная плата CH408 имеет четыре порта аналоговых соединительных линий и восемь гибридных портов (цифровых системных телефонов и SLT-телефонов). Плата CH204 может быть установлена в разъем CN1 системного блока KSU или EKSU. Для обеспечения функций тарификации вызовов на интерфейсной плате CH408 может быть установлена дочерняя плата MG-CMU4. Плата CMU4 устанавливается в разъемы CN790 и CN791, как показано ниже на рисунке 4.7.2-1.

Плата снабжена двумя монтажными стойками, которые должны быть закреплены до установки платы. Чтобы установить плату в системный блок KSU, обратитесь к разделу 4.4.

Рисунок 4.7.2-1 Интерфейсная плата СН408

Коннекторы и модульные разъемы

В нижеследующей таблице показаны коннекторы и модульные разъемы интерфейсной платы CH408.

Таблица 4.7.21 Функциональное назначение коннекторов и модульных разъемов

Разъем	Функции	Примечание
CN1	Переходный разъем для второй интерфейсной платы	70 контактов
CN2	Для подключения платы к разъему CN1 материнской платы MBU	70 контактов
CN3	Разъем CPLD JTAG для перспективных разработок	10 контактов
CN790 и CN791	N791 Для установки модуля MG-CMU4	
		контактов
MJ1-1 и MJ1-2	Аналоговые СЛ (СО1 и СО2)	DIAG
	Аналоговые СЛ (СОЗ и СО4)	
MJ2	8 интерфейсов гибридных портов (цифровых или	RJ11
	аналоговых абонентских терминалов)	

Светодиодные индикаторы

Таблица 4.7.22 Светодиодная индикация интерфейсной платы СН408

Индикатор	Цвет	Описание
LD1	Синий	Состояние абонентского порта
		Светится - Абонентский порт используется
		Выключен - Абонентский порт в состоянии
		ожидания

4.7.3 CS416 (Плата 4 портов аналоговых соединительных линий и 16 портов SLT-телефонов)

Описание

Интерфейсная плата CS416 имеет четыре порта аналоговых соединительных линий и 16 портов SLT-телефонов (из них 8 портов обеспечиваются дочерней платой SLU8, уже установленной на заводе-изготовителе). Интерфейсная плата CS416 может быть установлена в разъем CN1 системного блока KSU или EKSU. Кроме того, для обеспечения функций тарификации вызовов на интерфейсной плате CS416 может быть установлена дочерняя плата MG-CMU4. Плата CMU4 устанавливается в разъемы CN790 и CN791, как показано ниже на рисунке 4.7.3-1.

Плата снабжена двумя монтажными стойками, которые должны быть закреплены до установки платы. Чтобы установить плату в системный блок KSU, обратитесь к разделу 4.4. Обратите внимание, что интерфейсная плата CS416 не имеет переходного разъема, поэтому она должна устанавливаться самой верхней (оконечной) платой на разъем CN1 материнских плат MBU.

Рисунок 4.7.3-1 Интерфейсная плата CS416

Коннекторы и модульные разъемы

В нижеследующей таблице показаны коннекторы и модульные разъемы интерфейсной платы CS416.

Разъем	Функции	Примечание	
CN2	Для подключения к разъему CN1 первой интерфейсной платы	70 контактов	
CN3	Разъем CPLD JTAG для перспективных разработок	10 контактов	
CN790 и CN791	Для установки модуля MG-CMU4	8 и 10 контактов	
	Аналоговые СЛ (СО1 и СО2)	DIAG	
МЈТ-ТИМЈТ-2	Аналоговые СЛ (СОЗ и СО4)		
MJ2	16 портов SLT-телефонов	RJ11	

Таблица 4.7.31 Функциональное назначение коннекторов и модульных разъемов

Светодиодные индикаторы

Таблица 4.7.32 Светодиодная индикация интерфейсной платы CS416

Индикатор	Цвет	Описание
LD1	Синий	Состояние абонентского порта
		Светится - Абонентский порт используется
		Выключен - Абонентский порт в состоянии
		ожидания
4.7.4 BH104 (Плата 1 порта интерфейса ISDN BRI и 4 гибридных портов)

<u>Описание</u>

Интерфейсная плата BH104 плата имеет один порт интерфейса базового доступа ISDN BRI (2B+D) и четыре гибридных порта (цифровых системных телефонов (DKT) и SLT-телефонов). Интерфейсная плата, как показано на рисунке 4.7.4-1, может быть установлена в разъем CN1 только в основном системном блоке KSU. Интерфейсная плата BH104 не имеет дополнительных модулей.

Многосекционные DIP-переключатели служат для установки режимов работы платы (S- или T-интерфейс) и согласования оконечной нагрузки линии (termination).

Плата снабжена двумя монтажными стойками, которые должны быть закреплены до установки платы. Чтобы установить плату в системный блок KSU, обратитесь к разделу 4.4.

Рисунок 4.7.4-1 Интерфейсная плата ВН104

Коннекторы и модульные разъемы

Таблица 4.7.41 Функциональное назначение коннекторов и модульных разъемов

Разъем	Функции	Примечание
CN1	Переходный разъем для второй интерфейсной платы	70 контактов
CN2	Для подключения платы к разъему CN1 материнской платы MBU	70 контактов
CN3	Разъем CPLD JTAG для технологических нужд	10 контактов
MJ1	1 порт интерфейса базового доступа ISDN BRI (2B+D)	RJ45
MJ4	4 интерфейса гибридных портов (цифровые системные или аналоговые SLT телефоны)	RJ11

<u> DIP-переключатели</u>

Таблица 4.7.42 Переключатель SW1. Режим работы интерфейса ISDN BRI платы BH104

	•	Режим		
переключатель	Функция	ON (ВКЛ)	ОFF (ВЫКЛ)	примечания
1	Режим интерфейса: S или T	Режим S	Режим Т	По умолчанию
2и3	Зарезервировано	-	-	- OFF (ВЫКЛ)
4	Шлейф линии BRI	Тест		

Таблица 4.7.43 Переключатель SW200. Согласование оконечной нагрузки (терминатор) линии ISDN BRI

Переключатель	Функция	Согласующий резистор	Примечания
1и2	Согласование оконечной нагрузки линии	Согласующий резистор порта 1 ON (ВКЛ) = Замкнуто OFF (ВЫКЛ) = Разомкнуто	По умолчанию - ON (ВКЛ)
3и4	Зарезервировано		

Светодиодные индикаторы

Таблица 4.7.44 Светодиодная индикация интерфейсной платы ВН104

Индикатор	Цвет	Описание
LD1	Синий	Состояние абонентского порта
		Светится - Абонентский порт используется
		Выключен - Абонентский порт в состоянии ожидания
LD2	Синий	Светится: интерфейс ISDN BRI используется
		Не светится: интерфейс ISDN BRI в режиме ожидания
LD3	Красный	Светится: Ошибка интерфейса ISDN BRI
		Не светится: Нормальная работа интерфейса ISDN BRI
LD4	Синий	Светится: Синхронизация интерфейса ISDN BRI от
		внешнего источника (от сети ISDN)
		Не светится: Синхронизация интерфейса ISDN BRI от
		встроенного тактового генератора

4.7.5 BH208 (Плата 2 портов интерфейса ISDN BRI и 8 гибридных портов)

<u>Описание</u>

Интерфейсная плата BH208 плата имеет два порта интерфейса базового доступа ISDN BRI (2B+D) и восемь гибридных портов (цифровых системных телефонов (DKT) и SLT-телефонов). Интерфейсная плата, как показано на рисунке 4.7.5-1, может быть установлена в разъем CN1 только в основном системном блоке KSU. Интерфейсная плата BH208 не имеет дополнительных модулей.

Многосекционные DIP-переключатели служат для установки режимов работы платы (S- или T-интерфейс) и согласования оконечной нагрузки линии (termination).

Плата снабжена двумя монтажными стойками, которые должны быть закреплены до установки платы. Чтобы установить плату в системный блок KSU, обратитесь к разделу 4.4.

Коннекторы и модульные разъемы

Разъем	Функции	Примечание
CN1	Переходный разъем для второй интерфейсной платы	70 контактов
CN2	Для подключения платы к разъему CN1 материнской платы MBU	70 контактов
CN3	Разъем CPLD JTAG для технологических нужд	10 контактов
MJ1	2 порта интерфейса базового доступа ISDN BRI (2B+D)	RJ45
MJ4	8 интерфейсов гибридных портов (цифровые системные или аналоговые SLT телефоны)	RJ11

<u> DIP- переключатели</u>

Таблица 4.7.52 Переключатель SW1. Режим работы интерфейса ISDN BRI платы BH208

	•	Режим		
переключатель	Функция	ON (ВКЛ)	ОFF (ВЫКЛ)	примечания
1	Режим интерфейса: S или T	Режим S	Режим Т	По умолчанию -
2и3	Зарезервировано	-	-	ОFF (ВЫКЛ)
4	Шлейф линии BRI	Тест		

Таблица 4.7.53 Переключатель SW200. Согласование оконечной нагрузки (терминатор) линии ISDN BRI

Переключатель	Функция	Согласующий резистор	Примечания
1и2	Согласование оконечной нагрузки линии	Согласующий резистор порта 1 ОN (ВКЛ) = Замкнуто ОFF (ВЫКЛ) = Разомкнуто	По умолчанию -
3и4	Согласование оконечной нагрузки линии	Согласующий резистор порта 2 ON (ВКЛ) = Замкнуто OFF (ВЫКЛ) = Разомкнуто	ON (ВКЛ)

Светодиодные индикаторы

Таблица 4.7.5-4 Светодиодная индикация интерфейсной платы ВН208

Индикатор	Цвет	Описание
LD1	Синий	Состояние абонентского порта
		Светится - Абонентский порт используется
		Выключен - Абонентский порт в состоянии ожидания
LD2	Синий	Светится: интерфейс ISDN BRI используется (порт 1 или 2)
		Не светится: интерфейс ISDN BRI в режиме
		ожидания
LD3	Красный	Светится: Ошибка интерфейса ISDN BRI, порт 1 или
		2
		Не светится: оба порта интерфейсов ISDN BRI в
		режиме ожидания
LD4	Синий	Светится: Синхронизация интерфейса ISDN BRI от
		внешнего источника (от сети ISDN)
		Не светится: Синхронизация интерфейса ISDN BRI
		от встроенного тактового генератора

4.7.6 PRIU (Плата 1 порта интерфейса ISDN PRI - 30 каналов)

Описание

Плата интерфейсов ISDN PRIU обеспечивает стандартный интерфейс ISDN PRI или E1. Плата PRIU, показанная на рисунке 4.7.6-1, может быть установлена только в разъем CN2 материнских плат MBUI или MBUID. Спецификации интерфейса соответствуют рекомендациям ITU-T G.704, G.703 и G.823. Плата PRIU использует формат кадра CEPT, состоящего из 32 8-битных тайм-слотов с суммарной скоростью передачи данных 2,048 МГц. Тайм-слот TSO используется для синхронизации циклов, тайм-слот TS16 используется в качестве канала сигнализации (D-канал). Остальные 30 тайм-слотов доступны в качестве разговорных каналов (B-каналы).

Плата PRIU обеспечивает выделение сигнала тактовой частоты из цифрового потока подключенной к ней линии. Выделенный тактовый сигнал передается в схему PLL на материнской плате MBU и используется в качестве внешнего источника синхронизации системы. Интерфейсная плата PRIU может работать как в режиме TE (режим терминального устройства), так и в режиме NT (режим сетевого устройства).

Плата PRIU в режиме E1 поддерживает импульсный набор, тональный набор (DTMF) и сигнализацию MFC-R2 (на основе Рекомендации ITU-T Q.440-480).

Двухсекционный DIP-переключатель определяет тип схемы интерфейса: PRI или E1. Назначение режима TE или NT производится при программировании системы.

Чтобы установить плату в системный блок KSU, обратитесь к разделу 4.4.

Рисунок 4.7.6-1 Интерфейсная плата PRIU

Коннекторы и модульные разъемы

Таблица 4.7.61 Функциональное назначение коннекторов и модульных разъемов

Разъем	Функции	Примечание
CN1	Для подключения к разъему CN2 на материнской плате MBUI или MBUID	40 контактов
MJ1	Линия PRI или E1R2	RJ45

DIP-переключатель

Таблица 4.7.6-2 Функциональное назначение DIP-переключателя SW1

	фулиция.	Режим		
переключатель	Функция	ON (ВКЛ)	ОFF (ВЫКЛ)	примечание
SW1-1	Режим E1R2 или PRI	E1R2	PRI	По умолчанию
SW1-2	Зарезервировано	вировано -		- ОЕЕ (ВЫКЛ)

Светодиодные индикаторы

Таблица 4.7.63 Светодиодная индикация интерфейсной платы PRIU

Индикатор	Цвет	Описание
	Синий	Светится: FPGA запрограммировано
LDT		Не светится: FPGA не запрограммировано
LD2	Синий	Мигание с периодом 500 мс: нормальная работа
	Синий	Светится: Канал ISDN PRI используется
LD3		Не светится: Все каналы ISDN PRI в режиме ожидания
LD4	Красный	Светится: Ошибка интерфейса ISDN PRI
		Не светится: Нормальная работа интерфейса ISDN PRI

4.7.7 BRIU2 (Плата 2 портов интерфейса ISDN BRI - 4 канала)

Описание

Плата интерфейсов ISDN BRIU2 имеет два порта интерфейса базового доступа BRI (2B+D). Плата, показанная на рисунке 4.7.7-1, может быть установлена только в разъем CN2 материнской платы MBUI или MBUID.

Двухсекционные DIP-переключатели служат для установки режимов работы платы (S- или T-интерфейс) и согласования оконечной нагрузки линии (termination). Чтобы установить плату в системный блок KSU, обратитесь к разделу 4.4.

Рисунок 4.7.7-1 Интерфейсная плата BRIU2

Коннекторы и модульные разъемы

Таблица 4.7.71 Функциональное назначение коннекторов и модульных разъемов

Разъем	Функции	Примечание
CN1	Для подключения к разъему CN2 на материнской	40 контактов
		D.145
МЈ1-1 и МЈ1-2	Линии ISDN BRI	RJ45

DIP-переключатели

Таблица 4.7.7-2 Переключатель SW1. Режим работы интерфейса BRI

D omow - 1010-0-0-1	A 1111111	Режим		
переключатель	Функция	ON (ВКЛ)	ОFF (ВЫКЛ)	примечания
1	Режим интерфейса: S или T	Режим S	Режим Т	По умолчанию -
2и3	Зарезервировано	-	-	ОFF (ВЫКЛ)
4	Шлейф линии BRI	Тест		

Таблица 4.7.7-3 Переключатель SW2. Согласование оконечной нагрузки (терминатор) интерфейса ISDN BRI

Переклю- чатель	Функция	Согласующий резистор	Примечания
1и2	Согласование оконечной нагрузки линии	Согласующий резистор порта BRI 1 ON (ВКЛ) = Замкнуто OFF (ВЫКЛ) = Разомкнуто	По умолчанию
3и4	Согласование оконечной нагрузки линии	Согласующий резистор порта BRI 2 ON (ВКЛ) = Замкнуто OFF (ВЫКЛ) = Разомкнуто	- ON (ВКЛ)

Светодиодные индикаторы

Таблица 4.7.7-4 Светодиодная индикация интерфейсной платы BRIU2

Индикатор	Цвет	Описание
LD1	Синий	Светится: Программирование CPLD
		Не светится: Программирование CPLD не производится
LD2	Синий	Светится - Канал BRI используется
		Не светится: Все каналы BRI в режиме ожидания
LD3	Красный	Светится: Ошибка интерфейса ISDN BRI
		Не светится: Оба порта ISDN BRI в нормальном режиме
LD4	Синий	Светится: Синхронизация интерфейса ISDN BRI от внешнего источника (от сети ISDN)
		Не светится: Синхронизация интерфейса ISDN BRI от
		встроенного тактового генератора

4.7.8 НҮВ8 (Плата 8 гибридных портов)

Описание

Плата интерфейса гибридных портов HYB8, показанная на рисунке 4.7.8-1, имеет 8 гибридных портов (порты цифровых системных телефонов или SLT-телефонов). Плата может быть установлена в разъем CN1 системного блока KSU или EKSU для расширения количества абонентских портов в системе. Интерфейсная плата HYB8 не имеет дополнительных модулей расширения.

Плата снабжена двумя монтажными стойками, которые должны быть закреплены до установки платы. Чтобы установить плату в системный блок KSU, обратитесь к разделу 4.4.

Рисунок 4.7.8-1 Интерфейсная плата НҮВ8

Коннекторы и модульные разъемы

Таблица 4.7.81 Функциональное назначение коннекторов и модульных разъемов

Разъем	Функции	Примечание
CN1	Переходный разъем для второй интерфейсной платы	70 контактов
CN2	Для подключения к разъему CN1 материнской платы MBU	70 контактов
CN3	Разъем CPLD JTAG для технологических нужд	10 контактов
MJ2	8 интерфейсов гибридных портов (цифровые системные	RJ11
	или аналоговые SLT телефоны)	

Светодиодные индикаторы

Таблица 4.7.82 Светодиодная индикация интерфейсной платы

Индикатор	Цвет	Описание	
LD1	Синий	Состояние абонентского порта	
		Светится - Абонентский порт используется	
		Выключен - Абонентский порт в состоянии ожидания	

4.7.9 SLB16 (Плата 16 портов SLT-телефонов)

Описание

Плата интерфейсов однолинейных аналоговых терминалов (SLT) SLB16, показанная на рисунке 4.7.9-1, имеет 16 портов SLT-телефонов. Обратите внимание, что 8 из 16 портов SLT предоставляются дочерней платой SLU8, которая уже установлена на заводе-изготовителе. Плата может быть установлена в разъем CN1 системного блока KSU или EKSU для увеличения количества абонентских портов аналоговых SLT-телефонов. Плата снабжена двумя монтажными стойками, которые должны быть закреплены до установки платы. Чтобы установить плату в системный блок KSU, обратитесь к разделу 4.4. Обратите внимание, что интерфейсная плата SLB16 не имеет переходного разъема, поэтому она должна устанавливаться самой верхней (оконечной) платой на разъем CN1 материнских плат MBU.

Рисунок 4.7.9-1 Интерфейсная плата SLB16

<u>Коннекторы и модульные разъемы</u>

Таблица 4.7.91 Функциональное назначение коннекторов и модульных разъемов

Разъем	Функции	Примечание
CN2	Для подключения к разъему CN1 первой интерфейсной платы	70 контактов
CN3	Разъем CPLD JTAG для технологических нужд	10 контактов
MJ2	16 портов SLT-телефонов	RJ11

Светодиодные индикаторы

Таблица 4.7.92 Светодиодная индикация интерфейсной платы SLB16

Индикатор	Цвет	Описание
LD1	Синий	Состояние абонентского порта:
		Светится - Абонентский порт используется

Индикатор	Цвет	Описание	
		Выключен - Абонентский порт в состоянии ожидания	

4.7.10 WTIB4 (Плата интерфейса DECT)

<u>Описание</u>

Плата интерфейса DECT WTIB4, показанная на рисунке 4.7.10-1, представляет собой контроллер управления системой беспроводной связи DECT и имеет четыре порта интерфейса многоканальных базовых станций iPECS GDC-600BE. В системе iPECS eMG80 может быть установлена только одна интерфейсная плата WTIB4. Поскольку доступ к плате WTIB4 может потребоваться в процессе развертывания базовых станций, рекомендуется устанавливать плату WTIB4 второй по счету на разъеме CN1 системного блока KSU.

Плата снабжена двумя монтажными стойками, которые должны быть закреплены до установки платы. Чтобы установить плату в системный блок KSU, обратитесь к разделу 4.4.

Рисунок 4.7.10-1 Интерфейсная плата WTIB4

После установки платы интерфейса DECT WTIB4 в системе может быть развернута беспроводная микросотовая сеть DECT, включающая до четырех базовых станций iPECS GDC-600BE. Каждая базовая станция может одновременно поддерживать до шести вызовов, всего в системе можно зарегистрировать до 48 беспроводных терминалов DECT. Указанные возможности перечислены в таблице ниже.

Параметр	Емкость
Соты (базовые станции)	4
Голосовые каналы / на базу	6
Зарегистрированные беспроводные терминалы	48
Количество одновременных беспроводных вызовов	24

<u>Переключатели</u>

Таблица 4.7.10-2 Кнопка SW1 интерфейсной платы WTIB4

Кнопка	Функция	Примечание
SW1	Кнопка перезапуска	Для перезапуска платы WTIB4
		нажмите кнопку

Таблица 4.7.10-3 DIP-переключатель SW2 платы WTIB4

Переклю-	Функции	ON (ВКЛ)	ОFF (ВЫКЛ)	По	
чатель				умолчанию	
1	Downe pofort		Нормальный	OFF	
1	Режим рассты	FEMMIDRO	режим	(ВЫКЛ)	
2	Управление	Эхоподавление	Эхоподавление		
2	эхоподавлением	включено	выключено		
3	Зарезервировано	Зарезервировано	Зарезервировано	ON (ВКЛ)	
1	Сброс базовых	Сброс всех базовых	Сброс одной	OFF	
4	станций	станций	базовой станции	(ВЫКЛ)	

Светодиодные индикаторы

Таблица 4.7.104 Светодиодная индикация интерфейсной платы WTIB4

Индикатор	Описание	
LD1	Прерывание HDLC	
LD2	Мигание с периодом 400 мс	
LD3	Зарезервировано	
	ОN (ВКЛ): Эхоподавление включено	
LD4	ОFF (ВЫКЛ): Эхоподавление выключено	

4.8 Дополнительные функциональные модули

Системные блоки KSU системы iPECS eMG80 могут быть оснащены несколькими дополнительными модулями для расширения емкости и функциональности системы. Каждый дополнительный функциональный модуль устанавливается в определенный разъем на материнской плате (MBU), как описано в данном разделе. К дополнительным функциональным модулям относятся следующие устройства:

- VVMU (VoIP and Voice Mail expansion Unit) Модуль расширения каналов VoIP и голосовой почты
- MEMU (Memory expansion Unit) Модуль расширения памяти
- MODU (Modem function Unit) Модуль модема
- MG-CMU4 (Call Metering Unit) Модуль определения импульсов тарификации (4-х канальный)

4.8.1 VVMU (VoIP and Voice Mail expansion Unit) - Модуль расширения каналов VoIP и голосовой почты

Описание

Модуль расширения каналов VoIP и голосовой почты VVMU (VoIP and Voice Mail expansion Unit), показанный на рисунке 4.8.1-1 ниже, увеличивает количество VoIP каналов, доступных в системе, увеличивает количество каналов голосовой почты и расширяет объем памяти для хранения сообщений голосовой почты. Кроме того, модуль VVMU имеет порт локальной сети LAN, обеспечивает интерфейс IP-телефонии для каналов модуля и для программных приложений, которые могут быть подключены к системе iPECS eMG80. Модуль расширения каналов VoIP и голосовой почты VVMU устанавливается в разъем CN3 материнской платы системного блока KSU, как описано в разделе 4.5.

<u>Каналы VOIP:</u>

Каналы VOIP могут быть использованы в качестве соединительных линий SIP/H.323, для подключения к системе системных IP-телефонов серий LIP или стандартных SIPтелефонов, а также для соединения с корпоративной сетью ATC (IP Networking). Как показано ниже в Таблице 4.8.11, в базовой конфигурации (MBU) система eMG80 предоставляет 2 канала VoIP. Количество каналов VOIP на материнской плате MBU может расширено до 8 при установке соответствующего кода активации лицензий.

Установка модуля VVMU позволяет добавить до 8 дополнительных каналов VoIP, для активации которых также требуется лицензия; при этом становится возможным использовать в системе iPECS eMG80 суммарно до 16 каналов VoIP.

Каналы Голосовой Почты:

Для поддержки сервисов голосовой почты система iPECS eMG80 в базовой конфигурации (MBU) имеет 2 канала голосовой почты. При активации

соответствующей лицензии плата MBU может обеспечивать дополнительно еще 2 канала голосовой почты (макс. 4 канала на MBU). Кроме того, посредством установки в систему модуля VVMU и соответствующего лицензионного ключа можно добавить дополнительно 4 канала голосовой почты.

Емкость памяти Голосовой Почты:

В базовой конфигурации (MBU) емкость памяти голосовой почты системы составляет 1 час. Установка модуля VVMU позволяет дополнительно увеличить емкость памяти голосовой почты на 16 часов (1 час исходно + 15 часов при установке лицензии).

	MBU			VVMU				Макс.
Функция	Базовая	По	Макс.	Базовая	По	Макс.	MEMU)*	на
	емкость	лицензии		емкость	лицензии			eMG80
Каналы VoIP	2	6	8	-	8	8	-	16
Голосовая								
почта:								
Каналы	2	2	4	-	4	4	-	8
Емкость								
памяти (час)	1	-	1	1	15	16	15	32)*

Таблица 4.8.11 Таблица емкости каналов VoIP и голосовой почты

ПРИМЕЧАНИЕ)*

Для увеличения емкости памяти голосовой почты на 15 часов в системе может быть также установлен модуль расширения памяти MEMU, подробнее см. раздел 4.8.2. Если в системе дополнительно установлены и модуль VVMU, и модуль MEMU, то общая емкость памяти голосовой почты может достигать 32 часов: 1 час в базовой конфигурации (MBU), плюс память модуля VVMU (1 час + 15 часов по лицензии), плюс 15 часов емкости памяти модуля MEMU. Для увеличения количества каналов VoIP, каналов голосовой почты и емкости памяти голосовой почты требуется установка дополнительных лицензий.

Выпуск 1.0

Рисунок 4.8.1-1 Модуль VVMU

Коннекторы и модульные разъемы

Таблица 4.8.12 Функциональное назначение коннекторов и модульных разъемов

Разъем	Функции	Примечание
CN1	Для подключения к разъему CN3 материнской платы MBU	32 контактов
CN3	Разъем CPLD JTAG для технологических нужд	10 контактов
CN12	Разъем CPU JTAG для технологических нужд	20 контактов
CN4	Последовательный порт для технического обслуживания	4 контактов
MJ1	Порт LAN	RJ45

<u>Переключатели</u>

Таблица 4.8.1-3 Кнопка SW2. Перезапуск модуля VVMU

Кнопка Функции	
SW2	Кнопка перезапуска

Светодиодные индикаторы

Таблица 4.8.1-4 Светодиодная индикация модуля VVMU

Индикатор		Цвет	Описание
LD1		Синий	Мигание с периодом 300 мс: нормальная работа
LD2		Синий	Состояние использования канала Светится - канал VoIP или канал голосовой почты используется Не светится - все каналы VoIP и голосовой почты находятся в режиме ожидания
MJ1	LD1	Link/Act	Светится - Подключено, Мигает - Передача данных
	LD2	Скорость передачи	Светится - 100МБит/с, Не светится - 10МБит/с

4.8.2 MEMU (Memory expansion Module Unit) - Модуль расширения памяти

<u>Описание</u>

Модуль расширения памяти MEMU (Memory expansion Module Unit) имеет NAND Flash-память и используется в системе iPECS eMG80 для увеличения объема памяти голосовой почты на 15 часов. Память голосовой почты является энергонезависимой, как расположенная на плате MBU, так и на модулях VVMU и MEMU, поэтому любые сообщения голосовой почты сохраняются при отказе питания системы iPECS eMG80, при условии, что переключатель SW1-2 на материнской плате MBU установлен в положение OFF (Запрет инициализации системной базы данных). Модуль расширения памяти MEMU устанавливается в разъем CN15 материнской платы MBU системного блока KSU.

Как показано на рисунке 4.8.2-1 ниже, модуль MEMU имеет один коннектор для монтажа на разъем CN15 материнской платы системного блока KSU. Модуль расширения памяти MEMU не имеет других разъемов, индикаторов и переключателей.

Рисунок 4.8.2-1 Модуль расширения памяти МЕМU

4.8.3 MODU (Modem function Unit) - Модуль модема

Описание

Модуль последовательного интерфейса модема MODU (Modem Function Unit), который показан на рисунке 4.8.3-1 ниже, предоставляет интерфейс аналогового модема, поддерживающий протоколы Bell, ITU-T, V.34, V.32BIS и V.90 на скоростях передачи от 300 бит/с до 33 Кбит/с с автоматическим согласованием скорости передачи. Модуль MODU имеет один коннектор для установки в разъем CN4 материнской платы системного блока KSU. Модуль модема MODU не имеет других разъемов, индикаторов и переключателей.

Рисунок 4.8.3-1 Модуль модема MODU

4.8.4 MG-CMU4 (Модуль определения импульсов тарификации - 50Гц/ 12КГц/ 16КГц)

<u>Описание</u>

Модуль определения импульсов тарификации MG-CMU4 (Call Metering Unit), показанный на рисунке 4.8.4-1, обеспечивает функциональность тарификации вызовов на аналоговых соединительных линиях (СЛ). Схемы модуля MG-CMU4 обнаруживают импульсы тарификации и сигнальную информацию, передаваемую из сети ТфОП с частотой 50 Гц, 12 кГц или 16 кГц. Модуль MG-CMU4 имеет 4 канала тарификации, каждый из которых подключается к отдельной аналоговой СЛ. Модуль MG-CMU4 может быть установлен в разъемы CN8 и CN9 материнских плат MBUA или MBUAD основного системного блока (KSU) или материнской платы EMBU дополнительного системного блока EKSU. Кроме того, модуль CMU4 может быть установлен на разъемы CN790 или CN791 дополнительных интерфейсных плат с портами аналоговых СЛ - платы CH204, CH408 и CS416.

Рисунок 4.8.4-1 Модуль определения импульсов тарификации MG-CMU4

5. Монтаж системных блоков KSU и EKSU

После того, как все дополнительные платы были установлены в основной и дополнительные системные блоки KSU и EKSU, можно приступать к процедуре установке системных блоков. Системные блоки могут быть установлены в настольном или настенном варианте, а также в 19" стойку. Хотя системный блок KSU может быть установлен в настольном варианте, данный способ установки в принципе не рекомендуется. Настенный монтаж и установка в 19" стойку обеспечивают дополнительную безопасность и оптимальные условия для работы оборудования.

ПРИМЕЧАНИЕ

Несмотря на то, что во время первоначального включения питания может потребоваться доступ к внутренним компонентам системного блока KSU, настоятельно рекомендуется выполнять монтаж и демонтаж системного блока, а также его перемещение только с установленной крышкой.

5.1 Внешний вид и размеры основного системного блока (KSU)

На рисунке 5.1-1 ниже показаны внешние размеры основного системного блока (KSU). Дополнительный системный блок EKSU имеет точно такие же размеры.

5.2 Настольная установка

Хотя это и не рекомендуется, основной системный блок (KSU) может быть установлен на рабочем столе или полке. В этом случае необходимо расположить системные блоки KSU и EKSU рядом друг с другом. Для обеспечения нормальной вентиляции минимальное расстояние между корпусами блоков должно составлять не менее 5 см.

ПРИМЕЧАНИЕ

Если в основном и дополнительном системных блоках KSU и EKSU установлено максимально возможное количество дополнительных интерфейсных плат, настоятельно рекомендуется, как минимум, настенный монтаж системных блоков.

Важно, чтобы ни в коем случае основной и дополнительный системные блоки не были установлены друг на друга.

Рисунок 5.2-1. Настольная установка

5.3 Монтаж на стену

Настенный монтаж, показанный на рисунке 5.3-1, является наиболее общим методом установки системных блоков. Для обеспечения надежности настенного монтажа рекомендуется предварительно закрепить на стене лист фанеры толщиной 18-20 мм, на котором выполнить настенный монтаж системных блоков, монтажных панелей и другого оборудования.

- 1. С помощью монтажного шаблона разметьте стену, просверлите три отверстия и забейте в них пластиковые дюбели.
- 2. Вставьте три шурупа в дюбели и заверните их отверткой, оставив между головкой шурупа и стеной зазор около 3 мм.
- 3. Навесьте системный блок на шурупы, убедившись, что системный блок надежно сдвинут вниз до упора.
- 4. Повторите шаги с 1 по 3 для дополнительного системного блока EKSU. Перед закреплением на стене монтажного шаблона для блока EKSU убедитесь, что длины кабеля расширения достаточно для подключения дополнительного системного блока к основному. Кроме того, для обеспечения нормальной вентиляции минимальное расстояние между корпусами блоков должно составлять не менее 5 см.

Рисунок 5.3-1 Установка монтажного шаблона и настенный монтаж

5.4 Установка в 19" стойку

Системный блок системы iPECS eMG80 может быть установлен в стандартную 19дюймовую стойку с использованием установочных кронштейнов. Перед монтажом в стойку убедитесь в достаточности пространства для установки, проверьте параметры электропитания, заземления и вентиляции на соответствие требованиям. На рисунке 5.4-1 показан монтаж системного блока в 19" стойку, для выполнения монтажа используйте рисунок и приведенные ниже шаги.

- Совместите монтажный кронштейн с двумя установочными пазами на нижней поверхности системного блока. Приложите кронштейн к системному блоку и сдвиньте кронштейн в направлении, указанном стрелкой.
- 2. Убедитесь, что кронштейн полностью сдвинут в пазы до упора, затем вставьте и затяните два винта, чтобы закрепить кронштейн на системном блоке.
- 3. Установите системный блок с закрепленным монтажным кронштейном в 19дюймовую стойку и закрепите с помощью четырех винтов.
- 4. Повторите шаги с 1 по 3 для дополнительного системного блока EKSU. Перед закреплением на стене монтажного шаблона для блока EKSU убедитесь, что длины кабеля расширения достаточно для подключения дополнительного системного блока к основному. Кроме того, для обеспечения нормальной вентиляции расстояние между корпусами блоков следует выбирать максимально возможное, с учетом длины соединительного кабеля.

6. Подключение кабелей к системным блокам

6.1 Подключение системных блоков

Если в системе устанавливается дополнительный системный блок (EKSU), он должен быть подключен к основному системному блоку (KSU) для настройки и управления. Дополнительный системный блок должен быть подключен к основному системному блоку при помощи специального соединительного кабеля, как показано на рисунке 6.1-1. Соединительный кабель входит в комплект поставки дополнительного системного блока (EKSU) и представляет собой два кабеля разного цвета с разъемами на концах каждого кабеля. Серый кабель должен быть подключен к портам L системных блоков, черный кабель подключается к портам R.

Для подключения соединительного кабеля выполните следующие действия:

- 1. Подключите серый кабель к портам L KSU и EKSU.
- 2. Подключите черный кабель к портам R KSU и EKSU.
- 3. Чтобы надежно зафиксировать разъемы соединительных кабелей, затяните винты на каждом разъеме.

Рисунок 6.1-1 Подключение дополнительного системного блока (EKSU) к основному (KSU)

ПРИМЕЧАНИЕ

Если во время нормальной работы выключить, а затем включить электропитание дополнительного системного блока (EKSU), основной системный блок, к которому он подключен, автоматически перезагрузится для перенастройки.

6.2 Заземление системного блока

Правильное подключение системных блоков ATC iPECS eMG80 к защитному заземлению очень важно для предотвращения возможных контактов пользователя с опасным напряжением и уменьшения уровней электрических и радиочастотных помех. Убедитесь, что основной и дополнительный системный блоки правильно заземлены, как описано ниже и показано на рисунке 6.2-1.

- 1. Поверните винт заземления против часовой стрелки с помощью отвертки, чтобы ослабить его крепление.
- 2. Подключите провод заземления и затяните винт.
- 3. Подключите провод заземления к надлежащему контуру заземления (см. предостережение ниже).

Рисунок 6.2-1 Защитное заземление системных блоков

ПРЕДОСТЕРЕЖЕНИЕ

- Оборудование следует подключать только к розетке электропитания, оснащенной контуром заземления.
- Провод заземления должен иметь зелено-желтую изоляцию, площадь поперечного сечения проводника заземляющего контура должна быть не менее UL1015 18AWG (примерно 1 кв.мм).
- Неукоснительно соблюдайте требования местных регламентирующих органов.
- Контуры с высоким током утечки: обязательно подключите защитное заземление перед подключением телефонных линий.
- Дополнительно устанавливаемый заземляющий проводник может быть подключен между системным блоком и землей, то есть, в дополнение к заземляющему проводнику в шнуре питания.

- Дополнительно устанавливаемый заземляющий проводник не может быть меньше по размеру, чем штатный незаземленный проводник кабеля электропитания. Дополнительно устанавливаемый заземляющий проводник должен быть подключен к устройству постоянным способом ("под винт") так, чтобы подключение к защитному заземлению сохранялось и тогда, когда кабель электропитания отключается от системного блока или от сети. Заземление оборудования при помощи дополнительно устанавливаемого заземляющего проводника должно соответствовать правилам монтажа оконечных кабелей в части К статьи 250 Национального электротехнического кодекса, ANSI/NFPA 70, а также части 1 статьи 10 Электротехнического кодекса Канады, часть 1, С22.1. В качестве точки подключения дополнительного заземляющего проводника должна быть выбрана строительная стальная конструкция, находящийся в земле металлический кабельный канал или к любой заземленный элемент строительной конструкции, который является постоянно надежно И подключенным к защитному заземлению.
- В качестве заземляющего проводника могут использоваться неизолированные или изолированные проводники. Заземляющий проводник должен иметь непрерывную наружную поверхность зеленого цвета или зеленого с желтыми полосами.
- Обратите внимание: отдельная клемма защитного заземления, имеющаяся на системном блоке, должна быть постоянно и надежно подключена к защитному заземлению.

6.3 Подключение внешних батарей резервного питания

В случае отказа сети питания, внешние резервные батареи электропитания могут автоматически поддерживать бесперебойную работу системы iPECS eMG80. Внешние резервные батареи должны обеспечивать электропитание 24V постоянного тока. Указанное напряжение питания достигается последовательным включением двух батарей напряжением 12B, как показано на рисунке 6.3-1. Настоятельно рекомендуется устанавливать в цепи резервного питания предохранитель с номиналом 10A 250B для защиты контура питания от перегрузок по току. Основной и дополнительный системные блоки должен подключаться к отдельным батареям резервного электропитания.

Рисунок 6.3-1 Подключение внешних батарей резервного электропитания

Для подключения батарей резервного электропитания:

- 1. Используя входящий в комплект поставки кабель резервной батареи, подключите красный провод к положительному выводу одной из батарей.
- 2. Подключите синий проводник к отрицательному полюсу второй батареи.
- Соедините оставшиеся свободными отрицательную и положительную клеммы двух батарей вместе через предохранитель 10А 250В. Такое последовательное соединение батарей обеспечит напряжение питания 24В постоянного тока, требуемое для схемы резервного питания системы iPECS eMG80.
- 4. Вставьте разъем кабеля резервного питания в разъем "ВАТТ" на системном блоке.
- 5. Повторите шаги с 1 по 4 для дополнительного системного блока (EKSU).

ПРИМЕЧАНИЕ

Работой батарей управляет блок питания системного блока. Во время нормальной работы от источника переменного тока блок питания обеспечивает поступление к батареям зарядного тока (не более 200 мА). Работа блока питания от батарей прекращается при восстановлении питания переменного тока или если напряжение питания, обеспечиваемое батареями, оказывается недостаточным для поддержания полнофункциональной работы системы.

Надлежащая работа системы от внешних батарей зависит от нескольких факторов: состояние зарядки батарей, состояние и емкость батарей и конфигурация системы (в частности, количество абонентских портов).

ПРЕДОСТЕРЕЖЕНИЕ

- Рекомендуется всегда устанавливать между внешней батареей резервного питания и системой предохранитель номиналом 10А 250В.
- Расчетная емкость резервных батарей при напряжении 24В составляет 20 А*ч. Если батареи резервного питания находятся в хорошем состоянии, ожидаемая продолжительность работы системы iPECS eMG80 от батарей должна составить не менее 3 часов.
- При подключении батарей к системе внимательно проверяйте полярность по цвету проводов (красный и синий).
- Запрещается замыкать накоротко внешние батареи и кабели.
- Утилизацию отслуживших батарей осуществляйте в соответствии с инструкциями производителя.

6.4 Подключение к модульным разъемам портов внешних линий и абонентских портов

Тип установленных в системе модулей материнских плат (MBU) и дополнительных интерфейсных модулей определяет тип и количество доступных портов внешних линий и абонентских портов. В разделе 4 содержится подробная информация о емкости каждой материнской платы (MBU) и интерфейсной платы. Ниже приводятся инструкции по организации подключения кабелей для каждого типа интерфейсных портов.

Все подключения к модульным разъемам должны осуществляться при помощи кабеля типа "Витая пара" с толщиной проводников 22 или 24 AWG. При подключении к портам с разъемами RJ11 следует использовать как минимум 2-парные кабели, для подключения к портам с разъемами RJ45 должны использоваться 4-парные кабели.

ПРИМЕЧАНИЕ

В целом ряде случаев два интерфейсных контура в системе выведены на один модульный разъем. Необходимо выполнять разделку кабельных разъемов в строгом

соответствии с назначением контактных проводников, показанных на рисунке. В противном случае, схемы интерфейсов не будут работать должным образом.

6.4.1 Подключение аналоговой соединительной линии

Кабели для подключения аналоговых соединительных линий (CO Line) разделываются на каждом из концов разъемами RJ45, как показано в таблице ниже. Для подключения модульных разъемов соединительных линий,

- 1. Проложите кабели каждой соединительной линии к точкам подключения и установите разъемы RJ45 на концах кабелей.
- 2. Выполните маркировку кабеля для облегчения обслуживания в будущем.

Таблица 6.4.11 Модульный разъем для подключения аналоговой соединительной линии

Тип разъема	Нумерация контактов	№ контакта	Сигнал
RJ45		1,2	CO1-R, CO1-T
		3	-
		4,5	CO2-R, CO2-T
		6,7,8	-

6.4.2 Подключение цифровой соединительной линии ISDN BRI

Кабели для подключения цифровых соединительных линий ISDN BRI (2B+D) разделываются на каждом из концов разъемами RJ45, как показано в таблице ниже. Для подключения модульных разъемов цифровых соединительных линий ISDN BRI,

- 1. Проложите кабели каждой соединительной линии ISDN BRI к точкам подключения и установите разъемы RJ45 на концах кабелей.
- 2. Выполните маркировку кабеля для облегчения обслуживания в будущем.

Таблица 6.4.2-1 Модульный разъем для подключения цифровой соединительной линии ISDN BRI

Тип разъема	Нумерация контактов	№ контакта	Сигнал	Функция
	RJ45	1,2,7,8	-	-
RJ45		3	TX+	Передача данных
		4	RX+	Прием данных
		5	RX-	Прием данных
		6	TX-	Передача данных

6.4.3 Подключение цифровой соединительной линии ISDN PRI

Кабель для подключения цифровой соединительной линии ISDN PRI разделываются на каждом из концов разъемами RJ45, как показано в таблице ниже. Для подключения модульных разъемов цифровых соединительных линий ISDN PRI,

- 1. Проложите кабели каждой соединительной линии ISDN PRI к точкам подключения и установите разъемы RJ45 на концах кабелей.
- 2. Выполните маркировку кабеля для облегчения обслуживания в будущем.

Таблица 6.4.3-1 Модульный разъем для подключения цифровой соединительной линии ISDN PRI

Тип разъема	Нумерация контактов	№ контакта	Сигнал	Режим
		1	RX-T / TX-T	TE / NT
		2	RX-R / TX-R	TE / NT
		4	TX-T / RX-T	TE / NT
RJ45		5	TX-R / RX-R	TE / NT
		3	-	-
		6	-	-
		7, 8	-	-

ПРИМЕЧАНИЕ

В режиме ТЕ: контакты 1 и 2 – прием данных, контакты 3 и 4 – передача данных.

В режиме NT: контакты 1 и 2 – передача данных, контакты 3 и 4 – прием данных.

6.4.4 Подключение к портам цифрового интерфейса DKT

Кабели для подключения цифровых системных телефонов к порту цифрового интерфейса разделываются на каждом из концов разъемами RJ11, как показано в таблице ниже. Для подключения модульных разъемов цифровых системных телефонов,

- 1. Проложите кабели каждого цифрового телефона с разъемами RJ11 к точкам подключения.
- 2. Выполните маркировку кабеля для облегчения обслуживания в будущем.

Таблица 6.4.4-1 Подключение цифрового системного телефона к модульному разъему плат MDUA и MDUI

Тип разъема	Нумерация контактов	№ контакта	Сигнал
RJ11	1	-	
		2	DKT-T
		3,4	-
		5	DKT-R
		6	-

Таблица 6.4.4-2 Подключение цифрового системного телефона к модульному разъему плат MDUAD и MDUID (только для США)

Тип разъема	Нумерация контактов	№ контакта	Сигнал
RJ11	1	-	
		2	
		3,4	DKT-T, DKT-R
		5	
		6	

6.4.5 Подключение к модульным разъемам гибридных портов

Модульный разъем RJ11 гибридного порта содержит выводы схем одного интерфейса цифрового системного телефона (DKT) и одного интерфейса аналогового однолинейного терминала (SLT), как показано в таблице ниже. Обратите внимание, что при подключении абонентского терминала к гибридному порту можно использовать только один интерфейс, т.е. к гибридному порту можно подключения либо один цифровой системный телефон, либо SLT-телефон. Для подключения абонентского терминала к гибридному порту,

- 1. Проложите кабели с разъемами RJ11 к точкам подключения.
- 2. Выполните маркировку кабеля для облегчения обслуживания в будущем.

Тип	Нумерация	№ контакта	Сигнал
разъема	контактов		
		1	-
RJ11		2	DKT-T (Цифровой телефон)
	1 6	3,4	SLT-T (SLT-телефон),
			SLT-R (SLT-телефон)
		5	DKT-R (Цифровой телефон)
		6	-

Таблица 6.4.5-1 Подключение к модульному разъему гибридного порт	та
--	----

6.4.6 Подключение телефонов к модульным разъемам комбинированных портов

<u>Примечание:</u> Данный раздел касается только плат MDUAD и MDUID (предназначенных только для США).

Последние четыре встроенных порта интерфейсов абонентских терминалов на модулях материнских плат MBUAD и MBUID могут работать в комбинированном режиме, обеспечивая подключение как цифрового, так и аналогового терминала. Подключение терминалов к комбинированному порту производится при помощи одного кабеля с модульным разъемом RJ11, как показано в таблице ниже. Подключенные к комбинированному порту и цифровой, и аналоговый терминалы могут использоваться одновременно. Для подключения абонентских терминалов к комбинированному порту,

- 1. Проложите комбинированные кабели с разъемами RJ11 к каждому из терминалов.
- 2. Выполните маркировку кабеля для облегчения обслуживания в будущем.

Тип	Нумерация	№ контакта	Сигнал
разъема	контактов		
RJ11		1	
		2	DKT-T (Цифровой телефон)
		3,4	SLT-T (SLT-телефон),
			SLT-R (SLT-телефон)
		5	DKT-R (Цифровой телефон)
		6	-

Таблица 6.4.6-1 Подключение к комбинированному порту абонентских терминалов

6.4.7 Подключение к портам интерфейса SLT

Кабели для подключения аналоговых однолинейных терминалов (SLT) разделываются на каждом из концов разъемами RJ11, как показано в таблице ниже. Для подключения модульных разъемов SLT-телефонов,

- 1. Проложите соединительные кабели с разъемами RJ11 к точкам подключения.
- 2. Выполните маркировку кабеля для облегчения обслуживания в будущем.

Тип	Нумерация	№ контакта	Сигнал
разъема	контактов		
RJ11		1	-
		2	SLT-T (SLT-телефон, для платы SLU8)
		3,4	SLT-T (SLT-телефон),
			SLT-R (SLT-телефон)
		5	SLT-R (SLT-телефон, для платы SLU8)
		6	-

Таблица 6.4.7-1 Подключение к портам интерфейса аналоговых абонентских терминалов (SLT)

6.4.8 Подключение базовых станций DECT к плате WTIB4

Плата беспроводного интерфейса DECT WTIB4 имеет четыре модульных разъема RJ11 для подключения базовых станций DECT iPECS GDC-600BE. Назначение контактов разъемов на плате WTIB4 и на базовой станции GDC-600BE представлено на таблице ниже. Обратите внимание, что при подключении к модульным разъемам портов модуля WTIB4 необходимо соблюдать особую осторожность. Как показано на рисунке 6.4.88-1, для уменьшения влияния наведенных электромагнитных помех при подключении базовой станции к порту интерфейсного модуля WTIB4 на каждый соединительный кабель должен быть установлен ферритовый фильтр, который входит в комплект поставки базовой станции. После завершения установки и процедуры первого включения системы iPECS eMG80, базовые станции DECT могут быть расположены и установлены в соответствии с указаниями в Руководстве по установке DECT, а также в Руководстве по эксплуатации устройства GDC-600TBE (инструмент для определения зоны наилучшего радиопокрытия DECT). После установки базовых станций и настройки соответствующих системных параметров абонентские DECT-терминалы могут пройти процедуру регистрации в системы eMG80.

Для подключения базовых станций к плате WTIB4,

- Убедитесь, что питание системного блока выключено. Проведение работ по установке при включенном электропитании может привести к серьезному повреждению интерфейсного модуля WTIB4, базовой станции и системного блока (KSU).
- Для каждого гнезда установите разъемы RJ11 на концах кабеля типа "Витая пара" (UTP). Используйте 2-х парный кабель UTP категории 3 или более высокой категории. При установке следуйте назначениям контактов, указанным в таблице ниже.
- 3. Пропустите кабель через ферритовый фильтр. Сделайте, по крайней мере, три оборота кабеля через сердечник, как показано на рисунке 6.4.88-1.
- 4. Выполните подключение кабеля к базовой станции, как показано в таблице 6.4.8-1.

5. Пометьте или пронумеруйте соединение для последующего технического обслуживания.

ПРИМЕЧАНИЕ

Во время установки базовых станций может потребоваться доступ к плате интерфейса WTIB4. Рекомендуется устанавливать плату WTIB4 самой верхней (оконечной) платой на разъем CN1 материнских плат MBU.

Рисунок 6.4.8-1 Подключение базовых станций к портам платы WTIB4 кабелем с ферритовыми фильтрами

ПРЕДОСТЕРЕЖЕНИЕ

Вся проводка между платой WTIB4 и базовыми станциями GDC-600BE должна быть выполнена кабелем типа "витая пара" Категории 3 или 5. Использование даже коротких отрезков обычного кабеля, проводники в котором не скручены попарно, может вызывать сбои в работе базовой станции и абонентских терминалов DECT.
Разъемы платы WTIB4 и базовой станции GDC-600BE

Модель	Порт	Нумерация контактов	№ контакта	Назначение контактов	Функция
		1 6	1, 6	-	
			2	RX (GND)	Прием данных
Плата WTIB4	WTI1 no WTI4		3	TX (+30B)	Передача данных
			4	TX (+30B)	Передача данных
			5	RX (GND)	Прием данных
		1 6	1, 6	-	
Базовая станция GDC- 600BE	MJ1		2	TX (GND)	Передача данных от базы
			3	RX (+30B)	Прием данных на базе
			4	RX (+30B)	Прием данных на базе
			5	TX (GND)	Передача данных от базы

Таблица 6.4.8-1 Разъемы платы WTIB4 и базовой станции GDC-600BE

Функция автоматической проверки линий платы WTIB4

Плата интерфейса DECT WTIB4 обеспечивает процедуру проверки линии подключения каждой базовой станции. Процедура автоматической проверки линии может быть инициирована вручную путем установки в соответствующее положение DIP-переключателя SW2, расположенного на плате WTIB, или через интерфейс командной строки. Для выполнения проверки линии вручную,

- 1. При выключенном электропитании системы установите все секции DIPпереключателя SW2 на плате WTIB4 в состояние ON (Включено).
- Включите электропитание системы. По окончании загрузки системы плата WTIB4 проведет автоматическую проверку линии. Проверка занимает около 5 минут, в течение испытательного цикла светодиодные индикаторы 1-4 платы WTIB4 будут мигать с периодом 1 секунда.
- 3. После завершения проверки на светодиодных индикаторах платы WTIB4 будут отображаться результаты, как показано на рисунке ниже.

Индикатор	Результат

Не светится	Исправно
Светится	Неисправно
Индикатор продолжает	
мигать с периодом 1 секунда	пет подключения

4. Верните все секции DIP-переключатели SW2 на плате WTIB4 в исходное положение и нажмите кнопку перезапуска платы WTIB4.

Для выполнения автоматической проверки линии с использованием интерфейса командной строки следуйте инструкциям, приведенным в Руководстве по эксплуатации базовой станции iPECS GDC-600BE, которое вы можете получить у местного представителя компании Ericsson-LG. Результаты проверки отобразятся в формате, показанном на рисунке ниже. Варианты отображения: ОК (Исправно), NOT OK (Неисправно) или Base Eject (Базовая станция не подключена).

* Welcome to Ericsson-LG WTIB4 Liu Test Program Ver 0.a *
E1 Line Test Start !! 01minutes
During Test 00:59
E1 Line Test End !!
Base eject [01]
Base eject [02]
Base eject [03]
Base eject [04]
LIU Error cnt1 : Link0=0000, Link1=6700, Link2=7229, Link3=8131
: Link4=8170, Link5=7475, Link6=0000, Link7=0000
LIU Error cnt2 : Link0=0000, Link1=9475, Link2=9646, Link3=4363
: Link4=2793, Link5=5563, Link6=0000, Link7=000
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#### ПРИМЕЧАНИЕ

При использовании интерфейса Telnet для просмотра результатов проверки линии не пытайтесь выполнить ввод новой команды, это может привести к неверным результатам проверки линий.

Изменение положений секций DIP-переключателя SW2 на плате WTIB4 во время проверки линии не влияет на ее результаты. После завершения проверки установите все секции DIP-переключателя SW2 в требуемое положение (см. раздел 4.7.10), а затем нажмите кнопку перезапуска платы WTIB4 или кнопку перезапуска системы eMG80 (на MBU).

# 6.5 Подключение к LAN-портам материнской платы MBU и модуля VVMU

На материнской плате (MBU) и на модуле каналов VoIP и голосовой почты (VVMU) имеется порт локальной сети (LAN) IEEE 802.3 10/100Base-T. Подключение к порту локальной сети LAN выполняется кабелями с разъемами RJ45, установленными в соответствии со стандартами MDI, как показано в таблице ниже. Для подключения порта LAN,

- 1. Подключите порт LAN каждого устройства к соответствующему порту коммутатора локальной сети.
- 2. Выполните маркировку кабеля для облегчения обслуживания в будущем.

Тип разъема	Нумерация контактов	№ контакта	Сигнал	Функция
RJ45		4,5,7,8	-	
		1	TX+	Передача данных
		2	TX-	Передача данных
	8 1	3	RX+	Прием данных
		6	RX-	Прием данных

Таблица 6.5-1 Назначение контактов	порта локальной сети MBU и VVMU
------------------------------------	---------------------------------

#### ПРИМЕЧАНИЕ

Данное оборудование предназначено для использования исключительно в помещении, и все соединительные кабели должны быть проложены исключительно во внутренней части зданий.

## 6.6 USB-порт

На материнской плате MBU основного системного блока (KSU) имеется стандартный порт USB. Назначение контактов порта показано в таблице ниже. Любое стандартное устройство Flash-памяти, поддерживающее формат USB, может быть подключено к данному порту для резервного копирования и восстановления информации.

Разъем	Контакт	Номер контакта	Сигнал	Функция
USB		1	VBUS (+5B)	Питание
		2	D+	Данные
		3	D-	Данные
		4	GND	Сигнальная "земля"

Таблица 6.6-1 Назначение контактов порта USB

## 6.7 Подключение прочих внешних устройств

Материнская плата (MBU) основного системного блока (KSU) обеспечивает возможность подключения различных внешних устройств: внешнего источника музыки (External MOH), системы внешнего оповещения (External Pager, внешнего усилителя с динамиками), устройства громкого вызова (Loud Bell), и внешней сигнализации (Alarm Sensor). Материнская плата дополнительного системного блока (EKSU) предоставляет дополнительные ресурсы: реле управления внешними устройствами и вход датчика контроля за состоянием контактов внешней сигнализации. В обоих случаях на концах соединительного кабеля устанавливается разъем RJ45, подключение и назначение контактов разъема показано ниже на диаграмме подключения и на рисунке 6.7-1.

#### Подключение внешнего источника музыки

Когда вызов ставится на удержание, вызывающему абоненту может предоставляться музыка при удержании (МОН). Музыка при удержании может предоставляться как от внутреннего источника, так и от внешнего источника аудио-сигнала, подключенного к разъему МОН.

#### Подключение внешнего оповещения

Разъем внешнего оповещения позволяет выдавать аудио-сигнал на внешнее оборудование оповещения (усилитель и динамики). Система будет предоставлять аудио-сигнал 0 дБм при нагрузке 600 Ом.

#### Реле управления внешними устройствами

Разъем MJ4 (Miscellaneous - Различные устройства) предоставляет возможность управления внешним устройством с помощью встроенного реле. Данное реле позволять управлять работой различных устройств: устройством громкого вызова (Loud Bell), контроллером открытия двери (Door Open), устройством внешнего оповещения (External Pager).

#### Контакты датчика контроля внешней сигнализации

На разъем MJ4 (Miscellaneous - Различные устройства) выведены контакты входа датчика контроля внешней сигнализации. Датчик может быть использован для мониторинга состояния внешней сигнализации (Alarm Sensor) или состояния контактов дверного звонка (Door Bell).

При подключении к разъему МЈ4 используйте приведенные ниже рисунок 6.7-1 и таблицу назначения контактов.

- 1. Подключите к разъему МJ4 соединительный кабель, соответствующий типу подключаемого к порту устройства.
- 2. Выполните маркировку кабеля для облегчения обслуживания в будущем.



Рисунок 6.7-1 Подключение устройств к разъему MJ4

#### Назначение контактов модульного разъема вспомогательных устройств

Таблица 6.7-1	Назначение контактов	разъема	MJ4
---------------	----------------------	---------	-----

Тип разъема	Нумерация контактов	№ контакта	Сигнал	Функция
		1	RELAY_T	Контакты реле управления внешними
	1 8	2	RELAY_R	устройствами
RJ45		3	ALARM_T	Контакты датчика
		4	ALARM_R	сигнализации
		5	EXTPAGE_T	Внешнее оповещение
		6	EXTPAGE_R	(Выход аудио сигнала)
		7	EXTMOH_T	Внешний источник
		8	EXTMOH_R	(Вход аудио сигнала)

## Таблица 6.7-2 Назначение контактов разъема МЈ4 дополнительного системного блока EKSU

Тип разъема	Нумерация контактов	№ контакта	Сигнал	Функция
RJ45		1	RELAY_T	Контакты реле
		2	RELAY_R	управления внешними устройствами
		3	ALARM_T	Контакты датчика
		4	ALARM_R	контроля внешней сигнализации
		5 - 8	-	-

## 6.8 Подключение к последовательному порту RS-232

Разъем последовательного порта RS-232, распайка которого соответствует устройству DCE (устройство связи, модем), используется для различных функций вывода отчетной информации (отчеты детализации вызовов SMDR, отчеты по использованию трафика и т.п.). Кроме того, последовательный интерфейс RS-232 может быть использован для доступа к системе в целях ее обслуживания и диагностики. Разъем находится на левой стороне корпуса системного блока KSU, назначение контактов разъема указано в таблице 6.8-1. Для подключения компьютера к системе iPECS eMG80 посредством интерфейса RS-232 применяется прямой (модемный) соединительный кабель, распайка которого представлена на Рисунке 6.8-1.

Разъем	Нумерация контактов	№ контакта	Сигнал	Направ ление	Функция
		1	-		
		2	RD	Выход	Прием данных (на DTE)
		3	TD	Вход	Передача данных (от DTE)
D L anno		4	DTR	Вход	Готовность DTE
RJ-232C		5	SG	Общий	Сигнальная "земля"
		6	DSR	Выход	Готовность DCE
		7	RTS	Вход	Готовность к приему
		8	CTS	Выход	Запрос на передачу
		9	-		

Таблица 6.8-1 Назначение контактов разъема RS232 на плате MBU

#### ПРИМЕЧАНИЕ

- Порт последовательного интерфейса RS-232C платы MBU не поддерживает аппаратное управление потоком данных (сигналы RTS, CTS, DTR, DSR), поэтому можно применять соединительный кабель, состоящий только из 3-х сигнальных проводов: TD, RD, SG.
- 2) Наименование сигналов в соответствии со стандартом EIA RS-232C (ITU_T V.24) относится к стороне устройства DTE.



Рисунок 6.8-1 Соединительный кабель RS-232 для разъема DB-9

Используя таблицу назначения контактов и диаграмму подключения,

1. подключите порт RS-232 системы к соответствующему разъему терминального оборудования DTE (компьютеру).

2. Пометьте или пронумеруйте соединение для последующего технического обслуживания.

## 6.9 Кабельные подключения

Для обеспечения аккуратного профессионального монтажа оконечные разъемы соединительных кабелей системных блоков KSU должны быть защищены соответствующими крышками или колпачками. Кабельные жгуты должны быть стянуты нейлоновыми лентами и прикреплены к системным блокам, стене и монтажной стойке.

#### 6.9.1 Организация настенной проводки

Для организации кабельной проводки при настенном монтаже,

- 1. Убедитесь, что все платы установлены и подключены.
- 2. Закрепите кабельный кожух на системном блоке.
- 3. С помощью нейлоновых кабельных стяжек, входящих в комплект поставки, стяните кабельный жгут с правой нижней стороны системного блока KSU, как показано на рисунке 6.9.1-1.



#### Рисунок 6.9.1-1 Организация настенной проводки

#### 6.9.2 Расположение кабелей при креплении в стойку

Для организации кабельной проводки при монтаже в 19-дюймовую стойку,

- 1. Убедитесь, что все платы установлены и подключены.
- 2. Закрепите кабельный кожух на системном блоке.
- 3. С помощью нейлоновых кабельных стяжек, входящих в комплект поставки, стяните кабельный жгут с правой нижней стороны системного блока KSU, как показано на рисунке 6.9.2-1.
- Используя дополнительные кабельные стяжки, не входящие в комплект поставки устройства, стяните все установленные кабели, включая кабель питания и кабель соединения системных блоков, и привяжите их к отверстиям 19-дюймовой стойки.
- 5. Кабели, предназначенные для подключения периферийных устройств, стяните и выведите вниз по боковине 19" стойки и далее к точкам подключения устройств.



#### Рисунок 6.9.2-1 Расположение кабелей при креплении в 19-дюймовую стойку

#### 6.9.3 Установка кабельного кожуха

После полного завершения подключения и организации кабельной проводки для исключения случайных повреждений или манипуляций с кабелями следует закрепить на корпусе блока кабельный кожух. Для установки кабельного кожуха обратитесь к рисунку 6.9.3-1 и выполните следующие действия,

- 1. Расположите кабельный кожух на боковой стороне системного блока (KSU), вставив соответствующие выступы на кожухе в пазы на системном блоке.
- 2. Убедитесь, что выступы точно попали в пазы и поверните кабельный кожух в сторону системного блока в направлении стрелок, как показано на рисунке в позиции 1.
- 3. Надавите на крышку возле резьбового отверстия, как показано на рисунке в позиции 2, чтобы получить доступ к отверстию для винта.
- 4. Закрепите крышку винтом, как показано на рисунке в позиции 3.



Рисунок 6.9.3-1 Снятие и установка кабельного кожуха

# 7. Подключение терминалов

## 7.1 Модели терминалов

Система iPECS eMG80 может работать с рядом абонентских терминалов, включая собственные системные терминалы iPECS: цифровые серии LDP и IP-терминалы серии LIP (протокол IPKTS); а также стандартные SLT-телефоны и VoIP-телефоны с поддержкой протоколов SIP или H.323 v3. Конкретные модели системных терминалов LDP и LIP, поддерживаемых в системе iPECS eMG80, приведены в нижеследующей таблице.

Модель	Описание
LDP-7008D	Цифровой системный телефон (DKTU) с 8 программируемыми кнопками с дисплеем
LDP-7016D	Цифровой системный телефон (DKTU) с 16 программируемыми кнопками с дисплеем
LDP-7024D	Цифровой системный телефон (DKTU) с 24 программируемыми кнопками с дисплеем
LDP-7024LD	Цифровой системный телефон (DKTU) с 24 программируемыми кнопками с большим дисплеем
LDP-7048DSS	48-кнопочная консоль DSS/DLS для подключения к цифровому системному телефону (DKTU)
LDP-DPB	Домофон
LDP-7208D	Цифровой системный телефон (DKTU) с 8 программируемыми кнопками с дисплеем
LDP-7224D	Цифровой системный телефон (DKTU) с 24 программируемыми кнопками с дисплеем
LIP-8002E/2AE	IP телефон с 4 программируемыми кнопками с дисплеем
LIP-8008E	IP телефон с 8 программируемыми кнопками с дисплеем
LIP-8012E	IP телефон с 12 программируемыми кнопками с дисплеем
LIP-8024E	IP телефон с 24 программируемыми кнопками с дисплеем
LIP-8040E	IP телефон с 10 программируемыми кнопками с большим дисплеем
LIP-8050E	IP телефон с 5 программируемыми кнопками с цветным дисплеем
LIP-8050V	IP-телефон с 5 программируемыми кнопками с большим цветным дисплеем и видеокамерой
LIP-9070	IP-телефон с цветным 7-дюймовым сенсорным дисплеем и видеокамерой, на базе Android OS, разрешение WVGA, поддержка видео-коммуникаций Софт-кнопки (48 для протокола SIP / 30 для протокола iPECS)
LDP-9008D	Цифровой системный телефон (DKTU) с 8 программируемыми кнопками с дисплеем
LDP-9030D	Цифровой системный телефон (DKTU) с 30 программируемыми кнопками с дисплеем

Таблица 7.1-1 Поддерживаемые модели абонентских терминалов

Модель	Описание
LDP-9048DSS	48-кнопочная консоль DSS/DLS для подключения к цифровому системному телефону (DKTU)
ACT-50	Терминал iPECS для аудио-конференций
WIT-400HE	Беспроводной терминал WiFi / 2-дюймовый цветной дисплей/протокол iPECS IPKTS
GDC-450H/500H	Беспроводные терминалы DECT бизнес-класса, полноцветный ЖК-дисплей

## 7.2 Максимальная удаленность абонентских терминалов

На приведенном ниже рисунке 7.2-1 указана максимальная длина кабелей, при помощи которых подключаются к системе цифровые и аналоговые терминалы при условии подключения кабелем "витая пара" категории 3 или 5 и толщиной проводников 22 или 24 AWG. Максимальная длина соединительного кабеля между IP телефоном и коммутатором определена спецификациями локальных сетей Ethernet и составляет 100 метров. IP-телефоны должны быть подключены при помощи кабеля типа "витая пара" категории 5 для локальных сетей 10/100Base-T и категории 5E кабеля для сетей 1000Base-T.





Рисунок 7.2-1 Максимальная удаленность абонентских терминалов

## 7.3 Подключение терминалов

### 7.3.1 Подключение цифрового системного телефона (DKTU)

Цифровой системный телефон (DKTU) и цифровая консоль прямого доступа (DSS) подключаются к разъемам RJ11, расположенным в нижней части корпуса устройства. В телефонах серии LDP-72xx используется вторая пара контактов модульного разъема, все остальные телефоны серии LDP используют первую или центральную пару контактов разъема. Настенная розетка для цифровых системных телефонов или консолей прямого доступа должна быть присоединена к соответствующей точке подключения для порта цифровых телефонов в системе eMG80.

- Используя приведенную ниже диаграмму назначения контактов модульного разъема, подключите первую или вторую пару контактов настенной розетки к соответствующему порту устройств в системе при помощи кабеля "витая пара" (UTP). Обратите внимание, что для консолей LDP-7048 DSS требуется отдельное соединение.
- 2. Используя прилагаемый кабель, подключите цифровой системный телефон или консоль DSS к настенной розетке.

#### Назначение контактов модульного разъема

Тип разъема	Нумерация контактов	№ контакта	Сигнал
		1	-
RJ11		2	DKT-T
		3,4	-
	1 6	5	DKT-R
		6	-

#### Таблица 7.3.1-1 Назначение контактов разъема терминалов серии LDP-7200

#### Таблица 7.3.1-2 Назначение контактов разъемов терминалов серий LDP-7000 и LDP-9000

Тип	Нумерация	Nº KOHTAKTA	Сигнал
развема	KUNTAKTUB	KOHIAKIA	
RJ11		1	-
		2	-
		3,4	DKT-T, DKT-R
		5	-
		6	-

### 7.3.2 Подключение аналогового однолинейного терминала (SLT)

Аналоговый однолинейный терминал (SLT) подключается к центральной паре разъема RJ11, как правило, расположенного на тыльной стороне телефонного аппарата. Настенная розетка должна быть подключена к соответствующему абонентскому порту SLT в системе iPECS eMG80.

- 1. Соедините контакты центральной пары настенной розетки к точке подключения, используя кабель "витая пара" (UTP).
- 2. Используя прилагаемый кабель, подключите аналоговый однолинейный терминал (SLT) к настенной розетке.

#### Назначение контактов модульного разъема

#### Таблица 7.3.2-1 Назначение контактов разъема SLT-телефона

Тип	Нумерация	Nº	Сигнал
разъема	контактов	контакта	
		1,2	-
RJ11		3,4	SLT-T, SLT-R
	1 6	5,6	-

#### 7.3.3 Подключение ІР-телефона

Система iPECS eMG80 поддерживает подключение IP-телефонов iPECS серии LIP-8000E. Телефонные аппараты iPECS серии LIP-8000E включают в себя два порта Ethernet: порт для подключения к локальной сети (LAN) и порт для подключения к компьютеру (PC). Порт LAN подключается к порту коммутатора Ethernet, порт PC подключается к разъему локальной сети компьютера. Телефоны серии LIP могут быть подключены к любому порту коммутатора 10/100/1000 Base-T Ethernet с доступом к каналам VoIP системы iPECS eMG80. Телефоны серии LIP могут получать питание двумя способами: по сети Ethernet с использованием технологии PoE при подключении к порту коммутатора Ethernet с поддержкой PoE-класса 2 или от адаптера питания переменного тока.

Тип	Нумерация	Nº	Сигнал	Назначение
разъема	контактов	контакта		
	1 8	4,5,7,8	-	
		1	TV.	Передача
		1	174	данных
		2	ту	Передача
RJ45		2	17-	данных
		3	PY-	Прием
		5	11.7-	данных
		G		Прием
		σ	KA+	данных

#### Назначение контактов модульного разъема

#### Таблица 7.3.3-1 Назначение контактов разъема терминалов серии LIP

- Используя приведенную выше диаграмму назначения контактов, подключите контакты RX (прием) и TX (передача) от настенной розетки RJ45 или от IPтелефона к соответствующему порту коммутатора Ethernet с использованием кабеля "витая пара" (UTP) категории 5 при подключении к сети Ethernet 10/100Base-T или категории 5е при подключении к сети Ethernet 1000Base-T. Максимальная длина соединительного кабеля между IP-телефоном и портом коммутатора Ethernet составляет 100 метров.
- 2. Для подключения порта локальной сети (LAN) IP-телефона к IP-сети используйте кабель с разъемами RJ45, который входит в комплект поставки телефона.
- 3. Подключите порт PC IP-телефона к интерфейсу локальной сети компьютера с помощью кабеля типа "витая пара" категории не ниже 5 с разъемами RJ45.
- 4. Если вы не используете порт коммутатора РоЕ с подачей питания по сети Ethernet, подключите штекер разъема постоянного тока адаптера питания к входу питания постоянного тока в нижней части IP-телефона, а затем подключите кабель переменного тока адаптера к розетке электропитания 100~240B.

После того, как на телефон серии LIP будет подано электропитание, телефон будет пытаться зарегистрироваться в системе eMG80. По умолчанию, телефон серии LIP должен успешно завершить процедуру регистрации (если он включен в одну сеть с системой iPECS eMG80). Если процедура регистрации завершается неудачей, на ЖК-дисплее телефона отобразится сообщение "No Response" (Нет ответа), показанное ниже.

NO RESPONSE FROM MPB [L] SET[*] – RETRY[#]

Данное сообщение указывает на то, что телефон серии LIP должен быть настроен для работы в сети. Чтобы настроить телефон, выполните следующие действия.

- 1. Нажмите клавишу '*', чтобы настроить конфигурацию сети
- 2. Введите пароль, по умолчанию 147*.

- 3. Нажмите кнопки регулировки громкости [Vol Up]/[Vol Down] для прокрутки пунктов меню.
- 4. Введите соответствующие значения параметров локальной сети.
- 5. После завершения нажмите кнопку [Speaker].
- 6. Нажмите клавишу '*', чтобы выйти и перезапустить телефон серии LIP.

Меню на дисплее	Описание
MODE[R/L]	Режим регистрации, используйте '#', чтобы
[LOCAL] – CHANGE[#]	установить удаленный режим
PHONE IP ADDRESS (DOT:*)	С помощью наборной клавиатуры телефона введите фиксированный IP-адрес или используйте DHCP для динамической адресации
PHONE NET MASK(DOT:*)	С помощью наборной клавиатуры телефона введите маску подсети при использовании фиксированной IP-адресации
ROUTER IP ADDRESS(DOT:*)	С помощью наборной клавиатуры телефона введите IP-адрес шлюза по умолчанию при использовании фиксированной IP-адресации
MPB IP ADDRESS(DOT:*)	С помощью наборной клавиатуры телефона введите IP-адрес системы iPECS (MPB)
SAME LAN WITH MPB [YES] – CHANGE[#]	Данный параметр указывает, что IP-телефон и система eMG80 находятся в одном и том же сегменте локальной сети. Используйте клавишу # для переключения между вариантами ввода Yes/No (Да/Нет).
INPUT DEVICE NUMBER:	
DHCP ? [DISABLED] – CHANGE[#]	IP-телефон поддерживает режим фиксированной (статической) или динамической IP-адресации, используйте клавишу # для изменения значения.
VLAN CONFIGURATION NOT SET	Не используется
WEB PASSWORD	Не используется
PHY MODE : AUTO NEGO CHANGE[*] SAVE[#]	Настройка автоматического согласования скорости сетевого интерфейса и режима дуплекса, используйте клавишу *, чтобы изменить выбор

### 7.3.4 Установка и подключение консоли DSS/BLF

#### <u>Установка консоли LDP-7048DSS</u>

Цифровая консоль прямого доступа и отображения состояния абонента (DSS/BLF) iPECS LDP-7048DSS снабжена шарнирным креплением, которое позволяет надежно прикрепить консоль к соответствующему телефонному аппарату iPECS LDP-7000. Чтобы прикрепить консоль к телефону, обратитесь к рисунку 7.3.4-1 и прочтите следующие инструкции.

- 1. Переверните консоль и телефон тыльной стороной вверх.
- 2. Приложите шарнирное крепление к корпусу телефона в положение, показанное на круглой врезке рисунка ниже.
- 3. Вставьте и затяните винты. Во избежание повреждений пластиковых деталей запрещается чрезмерно затягивать винты.



Рисунок 7.3.4-1 Установка консоли LDP-7048DSS

#### Подключение консоли LDP-7048DSS

Консоль прямого доступа iPECS LDP-7048DSS подключается как обычный цифровой системный телефон к отдельному цифровому порту системы eMG80, обратитесь к разделу 7.3.1.

#### Установка и подключение консоли LIP-8000

Консоль прямого доступа и отображения состояния абонента (DSS/BLF) серии LIP-8000Е доступна в трех моделях: 12-кнопочная с бумажными этикетками кнопок (LIP-8012DSS), 12-кнопочная с ЖК-этикетками кнопок (LIP-8012LSS), и 48-кнопочная с ЖКэтикетками кнопок (LIP-8048DSS). К системным IP-телефонам серии LIP-8000 можно подключить до четырех консолей LIP-8000 при помощи последовательного кабеля. Телефонный LIP-8000E может ленточного аппарат обеспечить электропитание не более двух ЖК-консолей; когда к телефону подключается более двух консолей, одна из консолей должна быть 48-кнопочной. Во всех случаях, 48кнопочная консоль должна получать электропитание от адаптера питания. На приведенных ниже рисунках изображена установка консолей в различных конфигурациях. Обратите внимание, что во всех случаях к 48-кнопочной консоли должен быть подключен адаптер питания.



Рисунок 7.3.4-2 Конфигурации консолей серии LIP-8000

Принимая во внимание рисунок 7.3.4-3 ниже, используйте следующие инструкции по установке и подключению консолей серии LIP к соответствующему телефону серии LIP.

- 1. Переверните консоль и телефон тыльной стороной вверх.
- 2. Снимите с телефона LIP резиновую заглушку, защищающую последовательный разъем кабеля консоли.
- 3. Вставьте плоский ленточный кабель консоли в разъем на телефоне LIP.
- Вставьте два винта в отверстия в монтажном фланце консоли и отверткой заверните в корпус телефона LIP. Во избежание повреждения оборудования запрещается чрезмерно затягивать винты.
- 5. При подключения дополнительных консолей повторите процедуру, подключая новую консоль к предыдущей.

6. К каждой консоли iPECS LIP-8048DSS и LIP-8040LSS подключите разъем постоянного тока от адаптера питания, затем подключите вилку кабеля переменного тока адаптера в розетку соответствующего типа (100/240В).



Рисунок 7.3.4-3 Установка консоли серии LIP-8000

## 7.4 Настенное крепление абонентских терминалов

# 7.4.1 Настенное крепление терминалов iPECS серий LDP-7000 и LDP-9000

Абонентские терминалы iPECS серий LDP-7000 и LDP-9000 могут быть установлены на стене с помощью соответствующего набора для настенного монтажа. Процедура установки комплекта настенного крепления описана ниже. Дополнительный комплект настенного крепления, который не входит в комплект поставки телефонов серии LDP-7000, можно получить у компании Ericsson-LG.

- Используя соответствующий настенный кронштейн, отметьте и просверлите в стене два отверстия диаметром 7 мм для пластиковых дюбелей (входят в комплект поставки).
- 2. Вставьте два пластиковых дюбеля в подготовленные отверстия, затем вставьте и затяните два шурупа, оставив между шляпкой шурупа и стеной зазор примерно на 6 мм.

- Подключите один конец короткого телефонного кабеля с разъемами RJ11 к телефону серии LDP-7000, а затем подключите другой конец кабеля к настенной розетке.
- 4. Закрепите кронштейн для настенного монтажа на телефоне.
- 5. Вставьте в головки шурупов выемки на кронштейне для настенного монтажа. Если кронштейн излишне свободно скользит по головкам шурупов, слегка подтяните шурупы и установите кронштейн с телефоном на стене снова.
- 6. Вставьте в выемку для телефонной трубки специальный крючок, предотвращающий падение трубки при настенном монтаже.

#### 7.4.2 Настенное крепление абонентских терминалов LIP-8000E

Абонентские IP-терминалы iPECS серии LIP-8000E имеют настенное крепление в основании корпуса телефона. Следуя Руководству по эксплуатации телефона серии LIP-8000E, установите телефон на стене. Телефон серии LIP-8000E с подключенными консолями можно крепить на стене после того, как консоли правильно подключены к телефону LIP, обратитесь к разделу 7.3.4.

- 1. Используя рисунок 7.4.2-1, отметьте и просверлите в стене два отверстия диаметром 7 мм для пластиковых дюбелей.
- 2. Вставьте два пластиковых дюбеля в подготовленные отверстия, затем вставьте и затяните два шурупа, оставляя просвет около 2,5 мм. Если устанавливается телефон LIP с подключенными консолями, разметьте и просверлите отверстия, вставьте дюбели и заверните шурупы для настенного крепления каждой консоли, подключенной к телефону.
- 3. Совместите головки шурупов с выемками на корпусе телефона LIP-8000E, сдвиньте аппарат вниз до упора и убедитесь в надежном закреплении телефона. При необходимости снимите телефон со стены и дополнительно подтяните или ослабьте шурупы для надежного крепления аппарата.
- 4. Выньте крючок из выемки для трубки телефона, как показано на рисунках ниже. Переверните крючок обратной стороной и установите в выемку телефона LIP-8000E для предотвращения падения трубки при настенном монтаже.



Рисунок 7.4.2-1 Настенное крепление терминала серии LIP-8000E

## 8. Запуск системы IPECS EMG80

## 8.1 Первое включение питания в системе iPECS eMG80

Система iPECS eMG80 включает программные процедуры инициализации для автоматической настройки коэффициентов усиления и параметров тональных сигналов на основе кода страны, назначенного в базе данных системы. Кроме того, код страны используется для международных вызовов. Поэтому перед настройкой любых других параметров конфигурации, проверьте правильность установки кода страны в соответствии с местоположением устанавливаемой системы. Если код страны установлен неверно, измените его. После перезагрузки система выполнит инициализацию на основе измененного кода страны.

Для инициализации системы выполните следующие шаги:

- 1. Убедитесь, что переключатель SW1-1 (секция 1) на материнской плате (MBU) блока KSU находится в положении OFF (Выключено), а переключатель SW1-2 (секция 2) находится в положении ON (Включено). Кроме того, убедитесь, что электропитание от сети переменного тока отключено.
- Вставьте вилку кабеля питания переменного тока в разъем системного блока (KSU) системы iPECS eMG80 и подключите кабель питания к электрической розетке.
- 3. Включите переключатель питания переменного тока на основном системном блоке (KSU), затем на дополнительном системном блоке (EKSU).
- После запуска системы проверьте и при необходимости измените код страны (Программа 100) либо с цифрового системного терминала (раздел 8.2.1) либо посредством подключения к системе через Web-интерфейс и запустив мастер установки (раздел 8.3).
- 5. Выполните перезапуск системы нажатием утопленной кнопки Reset на системном блоке KSU или при помощи выключения и повторного включения электропитания.
- 6. После загрузки и инициализации системы убедитесь в том, что светодиодные индикаторы материнской платы основного системного блока указывают на нормальную работу. Затем обратитесь к разделу 4.5 и переведите переключатель SW1-2 (секция 2) на материнской плате (MBU) блока KSU в положение OFF (Выключено), чтобы при перезагрузке системы или включении питания не производилась инициализация системной базы данных.
- Если на шаге 4 для установки кода страны был использован цифровой системный терминал, подключитесь к системы через Web-интерфейс, запустите мастер установки и настройте систему в соответствии с потребностями пользователей.

В следующих разделах подробно описано, как проверить и изменить код страны и запустить мастер установки. После установки кода страны и инициализации системной базы данных систему можно настраивать дальше без необходимости повторной инициализации. Для получения более подробной информации о настройке системы eMG80, обратитесь к *Руководству по администрированию и программированию системы iPECS eMG80*.

## 8.2 Проверка установки кода страны

В системе имеется два способа проверки и установки кода страны. Первый способ заключается в использовании абонентского терминала оператора. Терминал оператора - это цифровой системный многокнопочный телефон iPECS серии LDP, подключенный к первому порту интерфейса цифровых телефонов (DKT) на материнской плате системного блока KSU. Второй способ состоит в использовании мастера установки системы iPECS eMG80, см. раздел 8.3.

# 8.2.1 Использование цифрового системного телефона (DKT) для проверки и настройки кода страны

1. Нажмите кнопку [Trans/PGM].

На дисплее отображается меню пользователя.

- Наберите '*' и '#'. На дисплее отображается сообщение "Admin Program Start" (Начать процедуру программирования).
- 3. Нажмите кнопку [Trans/PGM] снова и наберите 100.

На дисплее отображается сообщение "System ID" (Системный идентификатор) и запрашивается выбор программируемой кнопки.

- Нажмите первую программируемую кнопку на телефоне. На дисплее отображается сообщение "Country Code" (Код страны) и цифры кода страны.
- 5. Убедитесь в том, что код страны совпадает с местоположением устанавливаемой системы, принимая во внимание таблицу кодов стран, приведенную ниже.
- 6. Если код страны не является правильным, введите новый код.
- 7. Нажмите кнопку [Hold/Save].

На дисплее отображается новый код страны.

- 8. Нажмите кнопку [Speaker].
- 9. Теперь можно выполнить инициализацию системы с новым кодом страны, как описано в разделе 8.1.

Страна	Код	Страна	Код	Страна	Код
	страны		страны		страны
Америка	1	Аргентина	54	Австралия	61
Бахрейн	973	Бангладеш	880	Бельгия	32
Боливия	591	Бразилия	55	Бруней	673
Бирма	95	Камерун	237	Чили	56
Китай (Тайвань)	886	CHF (CIS)	7	Колумбия	57
Коста-Рика	506	Кипр	357	Чехия	42
Дания	45	Эквадор	593	Египет	20
Сальвадор	503	Эфиопия	251	Фиджи	679
Финляндия	358	Франция	33	Габон	241
Germany	49	Гана	233	Греция	30
Гуам	671	Гватемала	502	Гайана	592
Гаити	509	Гондурас	504	Гонконг	852
Индия	91	Индонезия	62	Иран	98
Ирак	964	Ирландия	353	Израиль	972
Италия	39	Япония	81	Иордания	962
Кения	254	Корея	82	Кувейт	965

Таблица 8.2.1-1 Коды стран

Страна	Код	Страна	Код	Страна	Код
	страны		страны		страны
Либерия	231	Ливия	218	Мальта	356
Люксембург	352	Малайзия	60	Марокко	212
Мексика	52	Монако	377	Нигерия	234
Нидерланды	31	Новая Зеландия	64	Пакистан	92
Норвегия	47	Оман	968	Парагвай	595
Панама	507	PNG	675	Португалия	351
Перу	51	Филиппины	63	Сенегал	221
Катар	974	Саудовская Аравия	966	Испания	34
Сингапур	65	ЮАР	27	Швеция	46
Шри Ланка	94	Свазиленд	268	Тунис	216
Швейцария	41	Таиланд	66	Великобритания	44
Турция	90	ОАЭ	971	Йеменская	967
				Арабская	
				Республика	
Уругвай	598	Венесуэла	58		

## 8.3 Мастер установки

Мастер установки является основным инструментом настройки системы. В дополнение к настройке кода страны, мастер установки предоставляет быстрый доступ к другим параметрам конфигурации, которые часто требуют смены, в том числе гибкий план нумерации системы (номера абонентов и функциональные коды), информация по IP-адресации и т.д. Мастер установки является частью веб-интерфейса Web Admin системы iPECS eMG80, доступ к веб-интерфейсу можно получить по локальной сети. Подключите компьютер к той же локальной сети, к которой подключен порт LAN основного системного блока (KSU) или непосредственно к порту LAN основного системного блока. Настройте IP-адрес вашего компьютера так, чтобы соответствовать IP-адресу системы по умолчанию (10.10.2), а затем выполните следующие действия.

- Шаг 1: Установите код страны.
- Шаг 2: Настройка ІР-интерфейса.
- Шаг 3: Установите номер абонента.
- Шаг 4: Установите гибкий план нумерации.
- Шаг 5: Установите назначения приема входящих внешних вызовов.

Шаг 6: Установите логин и пароль технического обслуживания системы (Maintenance).

- 1. Откройте браузер и введите в адресной строке IP-адрес по умолчанию порта LAN системного блока KSU (10.10.10.2). Появится начальная страница входа в систему eMG80 Web Admin Login.
- 2. Введите идентификатор по умолчанию (admin) и пароль (1234), а затем нажмите кнопку [Login].

iPECS eMG80
User ID: Login

3. Нажмите кнопку [Change Language] в верхней части окна браузера, выберите требуемый язык и нажмите кнопку [Next] для продолжения.

iPECS Install Wizard						Change Language Exit
Step 1 (Set Natio	on 🖸	Step 2 (Set IP Infor	Step 3 (Set Station	Step 4 (Set Flexibl	Step 5 (Set CO Rin	Step 6 (Set Mainte
You can't change Na If you want to change	ation Code e Nation C	when Dip Switch 2 is ode, then make Dip Sv	OFF status. witch 2 as ON status.			Next Save
Attribute		Value	Range			
Nation Code	U.S.A	~				
Site Name			Max 24 Characters			

4. Выберите соответствующую страну из раскрывающегося списка вариантов и введите имя сайта, если требуется. Переходите к следующей странице, нажав кнопку [Next] для продолжения.

iPECS Install Wizard						Change Language 📕 Exit
Step 1 (Set Natio	n ₀	Step 2 (Set IP Infor	Step 3 (Set Station	Step 4 (Set Flexibl	Step 5 (Set CO Rin	Step 6 (Set Mainte
You can't change Na If you want to change	tion Code Nation C	when Dip Switch 2 is OFF s code, then make Dip Switch	status. 2 as ON status.			Next Save
Attribute		Value	Range			
Nation Code	U.S.A	~				
Site Name			Max 24 Characters			

Вы не можете изменить код страны, переключатель SW1-2 (секция 2) находится в положении OFF (Отключено). Если требуется изменить код страны, вначале переведите переключатель SW1-2 в положение ON (Включено).

5. Установите настройки IP-адреса платы центрального процессора (MPB), как показано ниже, и нажмите кнопку **[Next]** для продолжения.

iPECS Install Wizard			С	hange Language 🛛 Ex
Step 1 (Set Nation Step 2 (Set IP Info O	Step 3 (Set Station	Step 4 (Set Flexibl	Step 5 (Set CO Rin	Step 6 (Set Mainte
				Prev Ne Sav
MPB DHCP : OFF ♥ MPB IP Address : 10.10.10.2 MPB Sub Net Mask : 255.255.255.0 Router IP Address : 10.10.10.1 Firewall IP Address : 0.0.0.0 DNS IP Address : 0.0.0.0				

Атрибут	ОПИСАНИЕ	ПО УМОЛЧ
MPB DHCP	Включение режима сервера DHCP	OFF (ВЫКЛ)
MPB IP Address	IP-адрес системы. Формат IPv4.	10.10.10.2
MPB Subnet Mask	Маска подсети	255.255.255.0

Атрибут	ОПИСАНИЕ	ПО УМОЛЧ
Router IP Address	IP-адрес шлюза по умолчанию (основного маршрутизатора) для доступа к внешней сети (WAN/IP). Необходим для передачи по IP-сетям данных и голосовой информации, внешнего доступа VoIP и удаленного доступа через Web.	10.10.10.1
Firewall IP Address	Когда система установлена за маршрутизатором NAPT, в этом поле должен быть проставлен фиксированный IP-адрес, предоставленный сервером NAPT. Используйте этот IP-адрес в удаленных устройствах в качестве адреса системы.	0.0.0.0
IP-адрес DNS-сервера, который система iPECS использует для разрешения символьных имен в IP- адреса. DNS-сервер предоставляет IP-адрес требуемого узла после получения его символьного имени от iPECS.		0.0.0.0

6. Введите диапазон номеров абонентов и нажмите кнопку **[Load]**. Если вы хотите изменить номер абонента на новый номер, вы можете ввести требуемый номер. Для перехода к следующему шагу нажмите кнопку **[Next]**.

Install W	fizard						Change Language E
Step	1 (Set Nation	Step 2 (Set	IP Infor	Step 3 (Set Statio	Step 4 (Set Flexibl	Step 5 (Set CO Rin	Step 6 (Set Mainte
Enter St	ation Index Range (1	- 140) :			load		Prev Next
Station I	ndex Range 1-50						Save
		Multiple Statio	n Number to cha	nge			
O Er	nter Ordering Range :	: -	Sta	art Station Number :			
		R	ange Save				
Index 1	a Station Number ⊥a	IP Address 1ª	MAC Address	* New Station Number			
2	101	10.10.10.2	b40e0cb15606	101			
2	101	10.10.10.2	b40edcbi5606	102			
3	102	10.10.10.2	b40edcbf5606	102			
5	103	10.10.10.2	b40edcbf5606	104			
6	105	10.10.10.2	h40edchf5606	105			
7	106	10.10.10.2	b40edcbf5606	106			
8	107	10.10.10.2	b40edcbf5606	107			
9	108	10.10.10.2	b40edcbf5606	108			
10	109	10.10.10.2	b40edcbf5606	109			
11	110	10.10.10.2	b40edcbf5606	110			
12	111	10.10.10.2	b40edcbf5606	111			
13	112	10.10.10.2	b40edcbf5606	112			
14	113	10.10.10.2	b40edcbf5606	113			
15	114	10.10.10.2	b40edcbf5606	114			
16	115	10.10.10.2	b40edcbf5606	115			
17	116	10.10.10.2	b40edcbf5606	116			
18	117	10.10.10.2	b40edcbf5606	117			
19	118	10.10.10.2	b40edcbf5606	118			
20	119	10.10.10.2	b40edcbf5606	119			
21	120	10.10.10.2	b40edcbf5606	120			
22	121	10.10.10.2	b40edcbf5606	121			

7. Установите код доступа к соединительным линиям, код вызова системного оператора, код группового перехвата и нумерацию групп приема входящих вызовов, а затем нажмите кнопку **[Next]** для продолжения.

i <b>Pe</b> Install Wiz	<b>CS</b> ard						Cha	ange Language 🛛 Exit
Step 1	(Set Nat Step 2 (Set	P I	Step 3 (Set S	Stat	Step 4 (Set	Fle C	Step 5 (Set CO	Step 6 (Set Mai
								Prev Next Save
Order <u>↓</u> ª	Attribute <u>↓</u> ^a		Va	ue				
1	Access CO In First CO Group	9						
2	Attendant Call	0						
3	Group Call Pick-Up	566						
4	Station Group Pilot Number	401		- 440				

- ✓ Код доступа к свободной СЛ в первой (младшей) доступной группе: Назначьте код доступа к исходящей связи.
- ✓ Код вызова оператора: Назначьте код вызова оператора.
- ✓ Групповой перехват: Назначьте код для активации перехвата вызова внутри группы абонентов.
- ✓ Пилотные номера групп абонентов: Назначьте диапазон пилотных номеров для вызова групп абонентов.

8. Установите назначения для приема входящих вызовов и нажмите кнопку [Next] для продолжения.

iPEC Install Wizar	<b>IS</b>					С	hange Language 🛛 Exit
Step 1 (S	et Nation	Step 2 (Set IF	Infor Step 3 (Set Stati	on	Step 4 (Set Flexibl	Step 5 (Set CO Rin O	Step 6 (Set Mainte
							Prev Next Save
Check All	At	tribute	Value	Range	Station Delay Value [Station:D	elay]	
		<ul> <li>Station Range</li> </ul>	Range : Delay :	0~9	[100:0]		
		🔵 Hunt Group					
	Day	<b>○</b> VSF	Announcement : Auto Drop :	0~70			
		🔿 AA Ring Time		0~30			
		🔘 Net Station					
		⊙ Station Range	Range : Delay :	0~9	[100:0]		
		🔵 Hunt Group					
	Night	<b>○</b> VSF	Announcement : Auto Drop :	0~70			
		🔵 AA Ring Time		0~30			
		🔿 Net Station					
		📀 Station Range	Range : Delay :	0~9	[100:0]		
	Timed Ring	🔵 Hunt Group					
		<b>○</b> VSF	Announcement : Auto Drop :	0~70			
		🔿 AA Ring Time		0~30			
		🔘 Net Station					

Каждый абонент в системе может быть назначен для приема входящих вызовов, поступающих по соединительным линиям с типом сервиса Normal Ring. При обнаружении наличия входящего вызова на указанной СЛ система обеспечивает посылку вызывного сигнала назначенному абоненту. Прием вызова может быть назначен как одному абоненту, так и нескольким абонента, в том числе и всем одновременно. Для каждого внутреннего абонента может быть задана задержка поступления входящего вызова от 1 до 9 звонков.

Распределение входящих вызовов с линий типа Normal Ring осуществляется в соответствие с таблицей Назначений приема входящих вызовов (CO Ring Assignment). Система позволяет назначить различные процедуры обработки вызовов раздельно для Дневного и Ночного режимов, а также для режима обслуживания по временному расписанию (Timer Ring). В качестве назначения приема входящего вызова могут быть указаны: внутренний абонент системы, группа приема входящих вызовов (Hunt Group), голосовое приветствие (VSF Announce), Автооператор, сетевой абонент (Net Number). При назначении вызова на голосовое объявление устройства VSF вызов может быть автоматически разъединен после воспроизведения назначенного объявления установкой символа # после голосового объявления устройства VSF.

Если в качестве пункта назначения для приема вызова указан Автооператор на основе использования групп внешней (AA/VM) или интегрированной (VSF) голосовой почты, или группы UMS на сервере функций, то сервис Автооператора может быть предоставлен немедленно или с некоторой задержкой. Это позволяет

другим абонентам или группам абонентов ответить на вызов до его поступления Автооператору. Задержка определяется в секундах от 00 до 30.

9. Установите идентификатор пользователя и пароль доступа в систему через вебинтерфейс Web Admin.

				Change Language Exit
Step 2 (Set IP Infor	Step 3 (Set Station	Step 4 (Set Flex	ibl Step 5 (Set CO Rin	Step 6 (Set Mainte
				Prev Finish
Add User				Save
	Max 16 Characters & Digits English Only / First letter m	ust be Alphabet		
Show Password	Max 16 Characters & Digits			
User List				
P	rivilege			
	Step 2 (Set IP Infor Add User	Step 2 (Set IP Infor     Step 3 (Set Station       Add User     Max 16 Characters & Digits       Base of the set	Step 2 (Set IP Infor       Step 3 (Set Station       Step 4 (Set Flex         Add User       Max 16 Characters & Digits       English Only / First letter must be Alphabet         Show Password       Max 16 Characters & Digits       User List         User List       Privilege	Step 2 (Set IP Infor       Step 3 (Set Station       Step 4 (Set Flexibl       Step 5 (Set CO Rin         Add User       Max 16 Characters & Digits English Only / First letter must be Alphabet       Max 16 Characters & Digits         User List       Privilege

Система iPECS eMG80 поддерживает одновременное подключение до 10 системных учетных записей пользователей (логин и пароль). На основе введенной учетной записи и пароля пользователя определяются права доступа к настройкам системы. Абонентские настройки учетных записей (логин и пароль) настраиваются в Программе 227.

В системе можно зарегистрировать до 50 учетных записей пользователей (логин и пароль). При этом одновременно войти в систему могут не более 10 пользователей.

10.Нажмите кнопку [Save], чтобы сохранить введенную информацию. Если на шаге 3 был изменен код страны, выполните перезагрузку системы, нажав на утопленную кнопку перезапуска на системном блоке, или выполните выключение питания системы и повторное включение.

#### ПРИМЕЧАНИЕ

Новые настройки будут применяться сразу же после сохранения данных. После сохранения нового идентификатора пользователя или пароля веб-интерфейса появится страница входа в систему Web Admin. Для новой сессии доступа к настройкам системы через веб-интерфейс будут использоваться новые учетные данные.

## 9. Техническое обслуживание и устранение неполадок

## 9.1 Общее техническое обслуживание

Система iPECS eMG80 является телекоммуникационной системой с высокой степенью надежности и не требует специализированных процедур обслуживания.

## 9.2 Замена предохранителя блока питания

Блок питания входит в состав системных блоков системы iPECS eMG80 и устанавливается на заводе-изготовителе. Блок питания размещен с левой стороны системного блока и обеспечивает три источника напряжения питания постоянного тока для материнской платы блока через 7-контактный разъем CN7. Предохранитель 2А 250В находится в левом нижнем углу платы блока питания.

Для замены предохранителя изучите рисунок ниже и выполните следующие действия,

- 1. Выключите электропитание системного блока KSU или EKSU и извлеките кабельную вилку шнура питания.
- 2. Снимите крышку блока KSU, обратитесь к разделу 4.3.
- 3. Открутите и снимите три винта, крепящих крышку блока питания и один винт внутри устройства.
- 4. Поднимите и снимите крышку блока питания.
- 5. Извлеките предохранитель из держателя.
- 6. Установите новый предохранитель. Новый предохранитель должен быть того же размера и номинала, что и исходный: 5х20 мм, 2А 250В.
- 7. Установите крышку блока питания обратно, вставьте и затяните четыре винта.



Рисунок 9.2-1 Замена предохранителя блока питания

## 9.3 Поиск неисправностей

#### Таблица 2.2-1 Диаграмма поиска неисправностей в системе iPECS eMG80

Проблема	Причина/Проявления	Решение
Отказ системы электропитания	Короткое замыкание в цепи электропитания одной или нескольких плат Все светодиоды LD1-3 на материнской плате MBU светятся или все не светятся	Замените неисправную плату на заведомо исправную. Протрите каждую плату сухой тканью. Проверьте предохранитель блока питания. Замените блок питания на заведомо исправный.
Система не работает	Короткое замыкание в цепи электропитания одной или нескольких плат Плохое соединение платы Системная база данных не работает	Проверьте соединение каждой платы с материнской платой MBU. Проверьте системное время Проверьте, нет ли короткого замыкания на плате MBU или других платах. Нажмите на кнопку перезагрузки, когда двухпозиционный переключатель SW1 для защиты базы данных находится в положении по умолчанию.
	Неисправность в цепях телефона Плохое соединение между	Замените неисправную плату на заведомо исправную. Проверьте соединение между SLT-
Цифровой системный телефон (DKTU) не работает	материнской платой MBU, дополнительной материнской платой EMBU или дополнительной интерфейсной платой и цифровым системным телефоном.	телефоном и системным телефоном на коммутационной панели и устраните все несоответствия. Отремонтируйте неисправные соединения между платой и цифровыми системными телефонами.
	Установочное расстояние между цифровым системным	Проверьте максимальное расстояние между системой eMG80 и цифровым

Проблема	Причина/Проявления	Решение		
	телефоном и системой	системным телефоном		
	Неисправен цифровой системный телефон	Подключите цифровой терминал к другому порту, который ранее был проверен в качестве рабочего. Если терминал все еще не работает должным образом, замените его.		
Аналоговый	Неисправна материнская плата MBU, дополнительная материнская плата EMBU или дополнительная интерфейсная плата	Замените неисправную плату на заведомо исправную.		
терминал не работает	Плохое соединение между материнской платой MBU, дополнительной материнской платой EMBU или дополнительной интерфейсной платой и SLT-телефоном.	Проверьте соединение между аналоговым терминалом и платой на коммутационной панели и устраните все несоответствия.		
Аналоговая соединительная пиния не	Отказ обнаружения АОН (CID) и тонального сигнала о прохожлении вызова	Проверьте устройство U8 (Устройство обработки голоса и обнаружения тональных сигналов)		
работает	Плохое соединение	Проверьте все соединения.		
Дополнительный системный блок не работает Помехи при использовании внешнего источника	Последовательность включения электропитания	Включите основной системный блок KSU после включения дополнительных системных блоков EKSU. Затем нажмите на кнопку перезагрузки.		
	Соединительный кабель дополнительного блока	Проверьте работоспособность соединительного кабеля дополнительного системного блока.		
	Помехи в проводке между системой и усилителем.	Убедитесь, что в качестве соединительного провода между системой и усилителем используется экранированный кабель.		
музыки или порта внешнего оповещения	Чрезмерный уровень входного сигнала от внешнего источника музыки	Уменьшите уровень выходного сигнала внешнего источника музыки с помощью регулятора громкости на источнике музыки.		
## **10. Уведомление об использовании** программного обеспечения с открытым исходным кодом

Нижеследующее программное обеспечение, используемое в этом продукте, является объектом лицензионных соглашений GPL (General Public License).

Вы можете получить копию лицензионного соглашения GPL на сайте компании Ericsson-LG (http://www.ericssonlg.com).

## Лицензии GPL:

- 1. armboot
- 2. linux
- 3. busybox
- 4. dhcpcd
- 5. **u-boot**

Ericsson-LG может предоставить вам исходный код программного обеспечения GPL на компакт-диске за плату, покрывающую такие расходы на выполнение этой услуги, как оплата стоимости носителя информации, доставка и обработка запроса на адрес электронной почты компании Ericsson-LG: opensource@ericssonlg.com.

Данное предложение действует в течение 3 (трех) лет от даты выпуска этого продукта компанией Ericsson-LG.

## Благодарим вас за покупку системы iPECS eMG80

Содержание этого документа подлежит пересмотру без предварительного уведомления в связи с продолжением развития методологии, проектирования и производства. Компания Ericsson-LG не несет никакой ответственности за любые ошибки или ущерб любого рода, возникшие в результате использования настоящего документа.

iPECS is an Ericcson-LG Brand

